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INTRODUCTION

With Run II and its large increase in integrated lu-
minosity, the Tevatron will enter an era of high pre-
cision measurements. In this era, parton distribution
function (PDF) uncertainties will play a major role.

The basic questions for PDFs at the Tevatron Run II
are simple and common to all other experiment:

• What limitations will the PDFs put on physics
analysis?

• What information can we gain about the PDFs?

There are some qualitative tools that exists and can be
used to try to answer these questions. However, beside
S. Alekhin’s pioneer work [1], quantitative tools that
attempt to include all sources of uncertainties are not
available yet. The main focus of this working group has
therefore been to investigate the different issues asso-
ciated with the development of those tools, although
obviously other topics have also been investigated.

We have divided this summary of activities into in-
dividual contributions:

• UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLI-
CATION ON PHYSICAL PREDICTIONS.
R. Brock et al. describe preliminary results from
an effort to quantify the uncertainties in PDFs
and the resulting uncertainties in predicted phys-
ical quantities. The production cross section of
the W boson is given as a first example.

• PARTON DISTRIBUTION FUNCTION UN-
CERTAINTIES. Giele et al. review the status
of their effort to extract PDFs from data with a
quantitative estimate of the uncertainties.

• EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE INCLUSIVE

JET CROSS SECTION. R. Hirosky summarizes
the current CDF and D0 analysis for the inclusive
jet cross sections. So far the uncertainties have
been assumed to be Gaussian distributed. He
investigates what information can be extracted
about the shape of the uncertainties with the goal
of being able to provide a way to calculate the
Likelihood.

• PARTON DENSITY UNCERTAINTIES AND
SUSY PARTICLE PRODUCTION. T. Plehn
and M. Krämer study the current status of PDF’s
uncertainties on SUSY particle mass bounds or
mass determinations.

• SOFT-GLUON RESUMMATION AND PDF
THEORY UNCERTAINTIES. G. Sterman and
W. Vogelsang discuss the interplay of higher or-
der corrections and PDF determinations, and the
possible use of soft-gluon resummation in global
fits.

• PARTON DISTRIBUTION FUNCTIONS: EX-
PERIMENTAL DATA AND THEIR INTER-
PRETATION. L. de Barbaro review current is-
sues in the interpretation of experimental data
and the outlook for future data.

• HEAVY QUARK PRODUCTION. Olness et al.
present a status report of a variety of projects
related to heavy quark production.

• PARTON DENSITIES FOR HEAVY QUARKS.
J. Smith compares different PDFs for heavy
quarks.

• CONSTRAINTS ON THE GLUON DEN-
SITY FROM LEPTON PAIR PRODUCTION.
E. L. Berger and M. Klasen study the sensitiv-
ity of the hadroproduction of lepton pairs to the
gluon density.
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Note that the individual references are at the end of
the corresponding contribution. The references for the
introduction and the conclusion are at the end.

UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLICA-
TIONS ON PHYSICAL PREDICTIONS

R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin,
D. Stump, W.K. Tung

Department of Physics and Astronomy, Michigan
State University, East Lansing, MI 48824

Abstract

We describe preliminary results from an effort to quan-
tify the uncertainties in parton distribution functions
and the resulting uncertainties in predicted physical
quantities. The production cross section of the W
boson is given as a first example. Constraints due to
the full data sets of the CTEQ global analysis are used
in this study. Two complementary approaches, based
on the Hessian and the Lagrange multiplier method
respectively, are outlined. We discuss issues on ob-
taining meaningful uncertainty estimates that include
the effect of correlated experimental systematic uncer-
tainties and illustrate them with detailed calculations
using one set of precision DIS data.

1. Introduction

Many measurements at the Tevatron rely on parton
distribution functions (PDFs) for significant portions
of their data analysis as well as the interpretation of
their results. For example, in cross section measure-
ments the acceptance calculation often relies on Monte
Carlo (MC) estimates of the fraction of unobserved
events. As another example, the measurement of the
mass of the W boson depends on PDFs via the mod-
eling of the production of the vector boson in MC. In
such cases, uncertainties in the PDFs contribute, by
necessity, to uncertainties on the measured quantities.
Critical comparisons between experimental data and
the underlying theory are often even more dependent
upon the uncertainties in PDFs. The uncertainties on
the production cross sections for W and Z bosons, cur-
rently limited by the uncertainty on the measured lu-
minosity, are approximately 4%. At this precision, any
comparison with the theoretical prediction inevitably
raises the question: How “certain” is the prediction
itself?

A recent example of the importance of PDF uncer-
tainty is the proper interpretation of the measurement
of the high-E � jet cross-section at the Tevatron. When
the first CDF measurement was published [1], there
was a great deal of controversy over whether the ob-
served excess, compared to theory, could be explained
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by deviations of the PDFs, especially the gluon, from
the conventionally assumed behavior, or could it be the
first signal for some new physics [2].

With the unprecedented precision and reach of many
of the Run I measurements, understanding the im-
plications of uncertainties in the PDFs has become
a burning issue. During Run II (and later at LHC)
this issue may strongly affect the uncertainty estimates
in precision Standard Model studies, such as the all
important W -mass measurement, as well as the signal
and background estimates in searches for new physics.

In principle, it is the uncertainties on physical quan-
tities due to parton distributions, rather than on the
PDFs themselves, that is of primary concern. The
latter are theoretical constructs which depend on the
renormalization and factorization schemes; and there
are strong correlations between PDFs of different fla-
vors and from different values of x, which can compen-
sate each other in the convolution integrals that relate
them to physical cross-sections. On the other hand,
since PDFs are universal, if we can obtain meaningful
estimates of their uncertainties based on analysis of
existing data, then the results can be applied to all
processes that are of interest in the future. [3,4]

One can attempt to assess directly the uncertainty
on a specific physical prediction due to the full range
of PDFs allowed by available experimental constraints.
This approach will provide a more reliable estimate for
the range of possible predictions for the physical vari-
able under study, and may be the best course of action
for ultra-precise measurements such as the mass of the
W boson or the W production cross-section. However,
such results are process-specific and therefore the anal-
ysis must be carried out for each case individually.

Until recently, the attempts to quantify either the
uncertainties on the PDFs themselves (via uncertain-
ties on their functional parameters, for instance) or
the uncertainty on derived quantities due to variations
in the PDFs have been rather unsatisfactory. Two
commonly used methods are: (1) Comparing the pre-
dictions obtained with different PDF sets, e.g., various
CTEQ [5], MRS [6] and GRV [7] sets; (2) Within a
given global analysis effort, varying individual func-
tional parameters ad hoc, within limits considered to
be consistent with the existing data, e.g. [8]. Neither
method provides a systematic, quantitative measure of
the uncertainties of the PDFs or their predictions.

As a case in point, Fig. 1 shows how the calculated
value of the cross section for W boson production at
the Tevatron varies with a set of historical CTEQ
PDFs as well as the most recent CTEQ [5] and MRST
[6] sets. Also shown are the most recent measurements
from DØ and CDF†. While it is comforting to see that

†It is interesting to note that much of the difference between the
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Figure 1. Predicted cross section for W boson produc-
tion for various PDFs.

the predictions have remained within a narrow range,
the variation observed cannot be characterized as a
meaningful estimate of the uncertainty: (i) the varia-
tion with time reflects mostly the changes in experi-
mental input to, or analysis procedure of, the global
analyses; and (ii) the perfect agreement between the
values of the most recent CTEQ5M1 ‡ and MRS99 sets
must be fortuitous, since each group has also obtained
other satisfactory sets which give rise to much larger
variations of the W cross section. The MRST group, in
particular has examined the range of this variation by
setting a variety of parameters to some extreme values
[8]. These studies are useful but can not be considered
quantitative or definitive. What is needed are methods
that explore thoroughly the possible variations of the
parton distribution functions.

It is important to recognize all potential sources of
uncertainty in the determination of PDFs. Focusing
on some of these, while neglecting significant others,
may not yield practically useful results. Sources of
uncertainty are listed below:

• Statistical uncertainties of the experimental data
used to determine the PDFs. These vary over a wide
range among the experiments used in a global analy-
sis, but are straightforward to treat.

• Systematic uncertainties within each data set.

DØ and CDF W cross sections is due to the different values of
the total pp̄ cross sections used
‡CTEQ5M1 is an updated version of CTEQ5M differing only
in a slight improvement in the QCD evolution (cf. note added
in proof of [5]). The differences are completely insignificant for
our purposes. Henceforth, we shall refer to them generically
as CTEQ5M. Both sets can be obtained from the web address
http://cteq.org/.
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There are typically many sources of experimental sys-
tematic uncertainty, some of which are highly corre-
lated. These uncertainties can be treated by standard
methods of probability theory provided they are pre-
cisely known, which unfortunately is often not the
case – either because they may not be randomly dis-
tributed and/or because their estimation in practice
involves subjective judgments.

• Theoretical uncertainties arising from higher-
order PQCD corrections, resummation corrections
near the boundaries of phase space, power-law (higher
twist) and nuclear target corrections, etc.

• Uncertainties due to the parametrization of the
non-perturbative PDFs, f � (x,Q0), at some low
momentum scale Q0. The specific choice of the func-
tional form used at Q0 introduces implicit correla-
tions between the various x-ranges, which could be
as important, if not more so, than the experimental
correlations in the determination of f � (x,Q) for all
Q.

Since strict quantitative statistical methods are
based on idealized assumptions, such as random mea-
surement uncertainties, an important trade-off must be
faced in devising a strategy for the analysis of PDF
uncertainties. If emphasis is put on the “rigor” of the
statistical method, then many important experiments
cannot be included in the analysis, either because the
published errors appear to fail strict statistical tests
or because data from different experiments appear to
be mutually exclusive in the parton distribution pa-
rameter space [4]. If priority is placed on using the
maximal experimental constraints from available data,
then standard statistical methods may not apply, but
must be supplemented by physical considerations, tak-
ing into account experimental and theoretical limita-
tions. We choose the latter tack, pursuing the determi-
nation of the uncertainties in the context of the current
CTEQ global analysis. In particular, we include the
same body of the world’s data as constraints in our
uncertainty study as that used in the CTEQ5 analy-
sis; and adopt the “best fit” – the CTEQ5M1 set – as
the base set around which the uncertainty studies are
performed. In practice, there are unavoidable choices
(and compromises) that must be made in the analysis.
(Similar subjective judgments often are also necessary
in estimating certain systematic errors in experimental
analyses.) The most important consideration is that
quantitative results must remain robust with respect
to reasonable variations in these choices.

In this Report we describe preliminary results ob-
tained by our group using the two approaches men-
tioned earlier. In Section 3 we focus on the error
matrix, which characterizes the general uncertainties

of the non-perturbative PDF parameters. In Sections
4 and 5 we study specifically the production cross sec-
tion σ � for W± bosons at the Tevatron, to estimate
the uncertainty of the prediction of σ � due to PDF
uncertainty. We start in Section 2 with a review of
some aspects of the CTEQ global analysis on which
this study is based.

2. Elements of the Base Global Analysis

Since our strategy is based on using the existing
framework of the CTEQ global analysis, it is useful
to review some of its features pertinent to the current
study [5].

Data selection:

Table 1 shows the experimental data sets included in
the CTEQ5 global analysis, and in the current study.
For neutral current DIS data only the most accurate
proton and deuteron target measurements are kept,
since they are the “cleanest” and they are already
extremely extensive. For charged current (neutrino)
DIS data, the significant ones all involve a heavy (Fe)
target. Since these data are crucial for the deter-
mination of the normalization of the gluon distribu-
tion (indirectly via the momentum sum rule), and for
quark flavor differentiation (in conjunction with the
neutral current data), they play an important role in
any comprehensive global analysis. For this purpose, a
heavy-target correction is applied to the data, based on
measured ratios for heavy-to-light targets from NMC
and other experiments. Direct photon production data
are not included because of serious theoretical uncer-
tainties, as well as possible inconsistencies between ex-
isting experiments. Cf. [5] and [9]. The combination of
neutral and charged DIS, lepton-pair production, lep-
ton charge asymmetry, and inclusive large-p � jet pro-
duction processes provides a fairly tightly constrained
system for the global analysis of PDFs. In total, there
are ∼1300 data points which meet the minimum mo-
mentum scale cuts which must be imposed to ensure
that PQCD applies. The fractional uncertainties on
these points are distributed roughly like dF/F over
the range F = 0.003− 0.4.

Parametrization:

The non-perturbative parton distribution functions
f � (x,Q) at a low momentum scale Q = Q0 are
parametrized by a set of functions of x, corresponding
to the various flavors a. For this analysis,Q0 is taken to
be 1 GeV. The specific functional forms and the choice
of Q0 are not important, as long as the parametriza-
tion is general enough to accommodate the behavior of
the true (but unknown) non-perturbative PDFs. The
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Process Experiment Measurable N � ��� �

DIS BCDMS[10] F
�
2 � , F

�
2 � 324

NMC [11] F
�
2 � , F

�
2 � 240

H1 [12] F
�
2 � 172

ZEUS[13] F
�
2 � 186

CCFR [14] F
�
2 � � , x F

�
3 � � 174

Drell-Yan E605[15] sdσ/d
√
τdy 119

E866 [16] σ(pd)/2σ(pp) 11
NA-51[17] A �
	 1

W-prod. CDF [18] Lepton asym. 11

Incl. Jet CDF [19] dσ/dE � 33
D0[20] dσ/dE � 24

Table 1
List of processes and experiments used in the
CTEQ5M Global analysis. The total number of data
points is 1295.

CTEQ analysis adopts the functional form

a0x
�
1(1− x)

�
2(1 + a3x

�
4).

for most quark flavors as well as for the gluon.§ After
momentum and quark number sum rules are enforced,
there are 18 free parameters left over, hereafter referred
to as “shape parameters” {a � }. The PDFs at Q > Q0

are determined from f � (x,Q0) by evolution equations
from the renormalization group.

Fitting:

The values of {a � } are determined by fitting the
global experimental data to the theoretical expressions
which depend on these parameters. The fitting is done
by minimizing a global “chi-square” function, χ2

global.
The quotation mark indicates that this function serves
as a figure of merit of the quality of the global fit; it
does not necessarily have the full significance associ-
ated with rigorous statistical analysis, for reasons to
be discussed extensively throughout the rest of this
report. In practice, this function is defined as:

χ2
global =

∑
�

∑

�
w �
[
(N � d � � − t � � ) /σ

�
� �
]2

+
∑
�

[
(1−N � ) /σ


�
]2

(1)

where d � � , σ
�
� � , and t � � denote the data, measurement

uncertainty, and theoretical value (dependent on {a � })
for the ith data point in the nth experiment. The
second term allows the absolute normalization (N � )

§An exception is that recent data from E866 seem to require the
ratio d̄/ū to take a more unconventional functional form.

for each experiment to vary, constrained by the pub-
lished normalization uncertainty (σ


� ). The w � fac-

tors are weights applied to some critical experiments
with very few data points, which are known (from
physics considerations) to provide useful constraints
on certain unique features of PDFs not afforded by
other experiments. Experience shows that without
some judiciously chosen weights, these experimental
data points will have no influence in the global fitting
process. The use of these weighing factors, to enable
the relevant unique constraints, amounts to imposing
certain prior probability (based on physics knowledge)
to the statistical analysis.

In the above form, χ2
global includes for each data

point the random statistical uncertainties and the com-
bined systematic uncertainties in uncorrelated form, as
presented by most experiments in the published pa-
pers. These two uncertainties are combined in quadra-
ture to form σ

�
� � in Eq. 1. Detailed point to point

correlated systematic uncertainties are not available
in the literature in general; however, in some cases,
they can be obtained from the experimental groups.
For global fitting, uniformity in procedure with respect
to all experiments favors the usual practice of merg-
ing them into the uncorrelated uncertainties. For the
study of PDF uncertainties, we shall discuss this issue
in more detail in Section 5.

Goodness-of-fit for CTEQ5M:

Without going into details, Fig. 2 gives an overview
of how well CTEQ5m fits the total data set. The graph
is a histogram of the variable x ≡ (d− t)/σ where d is
a data value, σ the uncertainty of that measurement
(statistical and systematic combined), and t the theo-
retical value for CTEQ5m. The curve in Fig. 2 has no
adjustable parameters; it is the Gaussian with width 1
normalized to the total number of data points (1295).
Over the entire data set, the theory fits the data within
the assigned uncertainties σ

�
� � , indicating that those

uncertainties are numerically consistent with the ac-
tual measurement fluctuations. Similar histograms for
the individual experiments reveal various deviations
from the theory, but globally the data have a reasonable
Gaussian distribution around CTEQ5M.

3. Uncertainties on PDF parameters: The Er-
ror Matrix

We now describe results from an investigation of the
behavior of the χ2

global function at its minimum, using
the standard error matrix approach [21]. This allows
us to determine which combinations of parameters are
contributing the most to the uncertainty.

At the minimum of χ2
global, the first derivatives with
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Figure 2. Histogram of the (measurement − theory)
for all data points in the CTEQ5m fit.

respect to the {a � } are zero; so near the minimum,
χ2

global can be approximated by

χ2
global = χ2

0 +
1

2

∑

� � �
F � � y � y � (2)

where y � = a � − a0 � is the displacement from the min-
imum, and F � � is the Hessian, the matrix of second
derivatives. It is natural to define a new set of coor-
dinates using the complete orthonormal set of eigen-
vectors of the symmetric matrix F � � as basis vectors.
These vectors can be ordered by their eigenvalues e � .
Each eigenvalue is a quantitative measure of the uncer-
tainties in the shape parameters {a � } for displacements
in parameter space in the direction of the correspond-
ing eigenvector. The quantity ` � ≡ 1/

√
e � is the dis-

tance in the 18 dimensional parameter space, in the
direction of eigenvector i, that makes a unit increase
in χ2

global. If the only measurement uncertainty were
uncorrelated gaussian uncertainties, then ` � would be
one standard deviation from the best fit in the direction
of the eigenvector. The inverse of the Hessian is the
error matrix.

Because the real uncertainties, for the wide variety
of experiments included, are far more complicated than
assumed in the ideal situation, the quantitative mea-
sure of a given increase in χ2������� � � carries little true sta-
tistical meaning. However, qualitatively, the Hessian
gives an analytic picture of χ2

global near its minimum in
{a � } space, and hence allows us to identify the partic-
ular degrees of freedom that need further experimental
input in future global analyses.

From calculations of the Hessian we find that the
eigenvalues vary over a wide range. Figure 3 shows

3 6 9 12 15
eigenvector #

0.003
0.01
0.03

0.1
0.3

1

1�
�
!!!!
!

e i

jonsevs.nb 1

Figure 3. Plot of the eigenvalues of the Hessian. The
vertical axis is ` � = 1/

√
e � .

a graph of the eigenvalues of F � � , on a logarithmic
scale. The vertical axis is ` � = 1/

√
e � , the distance of a

“standard deviation” along the ith eigenvector. These
distances range over 3 orders of magnitude.Large eigen-
values of F � � correspond to “steep directions” of χ2

global.
The corresponding eigenvectors are combinations of
shape parameters that are well determined by current
data. For example, parameters that govern the valence
u and d quarks at moderate x are sharply constrained
by DIS data. Small eigenvalues of F � � correspond to
“flat directions” of χ2

global. In the directions of these

eigenvectors, χ2
global changes little over large distances

in {a � } space. For example, parameters that govern
the large-x behavior of the gluon distribution, or dif-
ferences between sea quarks, properties of the nucleon
that are not accurately determined by current data,
contribute to the flat directions. The existence of flat
directions is inevitable in global fitting, because as the
data improve it only makes sense to maintain enough
flexibility for f � (x,Q0) to fit the available experimental
constraints.

Because the eigenvalues of the Hessian have a large
range of values, efficient calculation of F � � requires an
adaptive algorithm. In principle F � � is the matrix of
second derivatives at the minimum of χ2

global, which
could be calculated from very small finite differences.
In practice, small computational errors in the evalua-
tion of χ2

global preclude the use of a very small step size.
Coarse grained finite differences yield a more accurate
calculation of the second derivatives. But because the
variation of χ2

global varies markedly in different direc-
tions, it is important to use a grid in {a � } space with
small steps in steep directions and large steps in flat
directions. This grid is generated by an iterative pro-
cedure, in which F � � converges to a good estimate of
the second derivatives.

From calculations of F � � we find that the minimum
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Χ2 along eigenvectors # 1-6HE from eps=0.05 for 5mN31L
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Figure 4. Value of χ2 along the six eigenvectors with
the largest eigenvalues.

of χ2
global is fairly quadratic over large distances in the

parameter space. Figures 4 and 5 show the behavior

Χ2 along eigenvectors # 7-18HE from eps=0.05 for 5mN31L
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Figure 5. Value of χ2 along the 12 eigenvectors with
the smallest eigenvalues.

of χ2
global near the minimum along each of the 18 eigen-

vectors. χ2
global is plotted on the vertical axis, and the

variable on the horizontal axis is the distance in {a � }
space in the direction of the eigenvector, in units of
` � = 1/

√
e � . There is some nonlinearity, but it is small

enough that the Hessian can be used as an analytic
model of the functional dependence of χ2

global on the

shape parameters.
In a future paper we will provide details on the

uncertainties of the original shape parameters {a � }.
But it should be remembered that these parameters
specify the PDFs at the low Q scale, and applications
of PDFs to Tevatron experiments use PDFs at a high
Q scale. The evolution equations determine f(x,Q)
from f(x,Q0), so the functional form at Q depends on
the {a � } in a complicated way.

4. Uncertainty on σ � : the Lagrange Multiplier
Method

In this Section, we determine the variation of χ2
global

as a function of a single measurable quantity. We
use the production cross section for W bosons (σ � )
as an archetype example. The same method can be
applied to any other physical observable of interest,
for instance the Higgs production cross section, or to
certain measured differential distributions. The aim is
to quantify the uncertainty on that physical observable
due to uncertainties of the PDFs integrated over the
entire PDF parameter space.

Again, we use the standard CTEQ5 analysis tools
and results [5] as the starting point. The “best fit” is
the CTEQ5M1 set. A natural way to find the limits of
a physical quantity X , such as σ � at

√
s = 1.8 TeV, is

to take X as one of the search parameters in the global
fit and study the dependence of χ2

global for the 15 base
experimental data sets on X .

Conceptually, we can think of the function χ2
global

that is minimized in the fit as a function of
a1, . . . , a17, X instead of a1, . . . , a18. This idea could
be implemented directly in principle, but a more con-
venient way to do the same thing in practice is through
Lagrange’s method of undetermined multipliers. One
minimizes, with respect to the {a � }, the quantity

F (λ) = χ2
global + λX(a1, . . . , a18) (3)

for a fixed value of λ, the Lagrange multiplier. By min-
imizing F (λ) for many values of λ, we map out χ2

global

as a function ofX . The minimum of F for a given value
of λ is the best fit to the data for the corresponding
value of X , i.e., evaluated at the minimum.

Figure 6 shows χ2
global for the 15 base experimental

data sets as a function of σ � at the Tevatron. The
horizontal axis is σ � times the branching ratio for
W → leptons, in nb. The CTEQ5m prediction is
σ � · BRlep = 2.374 nb. The vertical dashed lines
are ±3% and ±5% deviations from the CTEQ5m pre-
diction.

The two parabolas associated with points in Fig. 6
correspond to different treatments of the normalization
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Figure 6. χ2 of the base experimental data sets ver-
sus σ � ·BRlep, the W production cross-section at the
Tevatron times lepton branching ratio, in nb.

factor N � in Eq. 1. The dots (•) are variable norm fits,
in which N � is allowed to float, taking into account the
experimental normalization uncertainties, and F (λ) is
minimized with respect to N � . The justification for
this procedure is that overall normalization is a com-
mon systematic uncertainty. The boxes (2) are fixed
norm fits, in which all N � are held fixed at their values
for the global minimum (CTEQ5m). These two proce-
dures represent extremes in the treatment of normal-
ization uncertainty. The parabolas associated with •’s
and 2’s are just least-square fits to the points.

The other curve in Fig. 6 was calculated using the
Hessian method. The Hessian F � � is the matrix of
second derivatives of χ2

global with respect to the shape
parameters {a � }. The derivatives (first and second) of
σ � may also be calculated by finite differences. Using
the resultant quadratic approximations for χ2

global(a)

and σ � (a), one may minimize χ2
global with σ � fixed.

Since this calculation keeps the normalization factors
constant, it should be compared with the fixed norm
fits from the Lagrange multiplier method. The fact
that the Hessian and Lagrange multiplier methods
yield similar results lends support to both approaches;
the small difference between them indicates that the
quadratic functional approximations for χ2

global and
σ � are only approximations.

For the quantitative analysis of uncertainties, the
important question is: How large an increase in χ2

global

should be taken to define the likely range of uncertainty
in X? There is an elementary statistical theorem that
states that ∆χ2 = 1 in a constrained fit corresponds

to 1 standard deviation of the constrained quantity X .
However, the theorem relies on the assumption that the
uncertainties are gaussian, uncorrelated, and correctly
estimated in magnitude. Because these conditions do
not hold for the full data set (of ∼ 1300 points from 15
different experiments), this theorem cannot be naively
applied quantitatively.¶ Indeed, it can be shown that,
if the measurement uncertainties are correlated, and
the correlation is not properly taken into account in
the definition of χ2

global, then a standard deviation may

vary over the entire range from ∆χ2 = 1 to ∆χ2 = N
(the total number of data points – ∼ 1300 in our case).

5. Statistical Analysis with Systematic Uncer-
tainties

Fig. 6 shows how the fitting function χ2
global increases

from its minimum value, at the best global fit, as the
cross-section σ � for W production is forced away from
the prediction of the global fit. The next step in our
analysis of PDF uncertainty is to use that information,
or some other analysis, to estimate the uncertainty in
σ � . In ideal circumstances we could say that a certain
increase of χ2

global from the minimum value, call it ∆χ2,
would correspond to a standard deviation of the global
measurement uncertainty. Then a horizontal line on
Fig. 6 at χ2

min+∆χ2 would indicate the probable range
of σ � , by the intersection with the parabola of χ2

global

versus σ � .
However, such a simple estimate of the uncertainty

of σ � is not possible, because the fitting function
χ2

global does not include the correlations between sys-

tematic uncertainties. The uncertainty σ
�
� � in the defi-

nition (1) of χ2
global combines in quadrature the statis-

tical and systematic uncertainties for each data point;
that is, it treats the systematic uncertainties as uncor-
related. The standard theorems of statistics for Gaus-
sian probability distributions of random uncertainties
do not apply to χ2

global.

Instead of using χ2
global to estimate confidence levels

on σ � , we believe the best approach is to carry out a
thorough statistical analysis, including the correlations
of systematic uncertainties, on individual experiments
used in the global fit for which detailed information is
available. We will describe here such an analysis for
the measurements of F2(x,Q) by the H1 experiment
[12] at HERA, as a case study. In a future paper, we
will present similar calculations for other experiments.

The H1 experiment has provided a detailed table
of measurement uncertainties – statistical and system-
atic – for their measurements of F2(x,Q). [12] The

¶It has been shown by Giele et.al. [4], that, taken literally, only
one or two selected experiments satisfy the standard statistical
tests.

173



CTEQ program uses 172 data points from H1 (requir-
ing the cut Q2 > 5 GeV2). For each measurement d �

(where j = 1 . . . 172) there is a statistical uncertainty
σ0

� , an uncorrelated systematic uncertainty σ1
� , and a

set of 4 correlated systematic uncertainties a � � where
k = 1 . . . 4. (In fact there are 8 correlated uncertain-
ties listed in the H1 table. These correspond to 4
pairs. Each pair consists of one standard deviation
in the positive sense, and one standard deviation in
the negative sense, of some experimental parameter.
For this first analysis, we have approximated each pair
of uncertainties by a single, symmetric combination,
equal in magnitude to the average magnitude of the
pair.)

To judge the uncertainty of σ � , as constrained by
the H1 data, we will compare the H1 data to the global
fits in Fig. 6. The comparison is based on the true,
statistical χ2, including the correlated uncertainties,
which is given by

χ2 =
∑
�

(d � − t � )2

σ2�
−
∑
��� ′

B �
(
A−1

)
��� ′ B

� ′ .
(4)

The index j labels the data points and runs from 1 to
172. The indices k and k′ label the source of systematic
uncertainty and run from 1 to 4. The combined uncor-

related uncertainty σ � is
√
σ2

0
� + σ2

1
� . The second term

in (4) comes from the correlated uncertainties. B � is
the vector

B � =
∑
�

(d � − t � ) a � �
σ2�

, (5)

and A ��� ′ is the matrix

A ��� ′ = δ ��� ′ +
∑
�

a � � a � � ′

σ2�
. (6)

Assuming the published uncertainties σ0
� , σ1

� and
a � � accurately reflect the measurement fluctuations,
χ2 would obey a chi-square distribution if the mea-
surements were repeated many times. Therefore the
chi-square distribution with 172 degrees of freedom
provides a basis for calculating confidence levels for the
global fits in Fig. 6.

Table 2 shows χ2 for the H1 data compared to seven
of the PDF fits in Fig. 6. The center row of the Table
is the global best fit – CTEQ5m. The other rows are
fits obtained by the Lagrange multiplier method for
different values of the Lagrange multiplier. The best
fit to the H1 data, i.e., the smallest χ2, is not CTEQ5m
(the best global fit) but rather the fit with Lagrange
multiplier 1000 for which σ � is 0.8% smaller than the
prediction of CTEQ5m. Forcing the W cross section

Lagrange σ � ·B χ2/172 probability
multiplier in nb

3000 2.294 1.0847 0.212
2000 2.321 1.0048 0.468
1000 2.356 0.9676 0.605

0 2.374 0.9805 0.558
-1000 2.407 1.0416 0.339
-2000 2.431 1.0949 0.187
-3000 2.450 1.1463 0.092

Table 2
Comparison of H1 data to the PDF fits with con-
strained values of σ � .

values away from the prediction of CTEQ5m causes an
increase in χ2 for the DIS data. At

√
s = 1.8 TeV, W

production is mainly from qq̄ → W+W− with moder-
ate values of x for q and q̄, i.e., values in the range
of DIS experiments. Forcing σ � higher (or lower) re-
quires a higher (or lower) valence quark density in the
proton, in conflict with the DIS data, so χ2 increases.

The final column in Table 2, labeled “probability”,
is computed from the chi-square distribution with 172
degrees of freedom. This quantity is the probability
for χ2 to be greater than the value calculated from
the existing data, if the H1 measurements were to be
repeated. So, for example, the fit with Lagrange mul-
tiplier −3000, which corresponds to σ � being 3.2%
larger than the CTEQ5m prediction, has probability
0.092. In other words, if the H1 measurements could
be repeated many times, in only 9.2% of trials would
χ2 be greater than or equal to the value that has been
obtained with the existing data. This probability rep-
resents a confidence level for the value of σ � that was
forced on the PDF by setting the Lagrange multiplier
equal to -3000. At the 9.2% confidence level we can
say that σ � ·BRlep is less than 2.450 nb, based on the
H1 data. Similarly, at the 21.2% confidence level we
can say that σ � · BRlep is greater than 2.294 nb.

Fig. 7 is a graph of χ2/N for the H1 data com-
pared to the PDF fits in Table 2. This figure may
be compared to Fig. 6. The CTEQ5 prediction of
the W production cross-section is shown as an arrow,
and the vertical dashed lines are ±3% away from the
CTEQ5m prediction. The horizontal dashed line is the
68% confidence level on χ2/N for N = 172 degrees of
freedom. The comparison with H1 data alone indicates
that the uncertainty on σ � is ∼ 3%.

There is much more to say about χ2 and confidence
levels. In a future paper we will discuss statistical
calculations for other experiments in the global data
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Figure 7. χ2/N of the H1 data, including error corre-
lations, compared to PDFs obtained by the Lagrange
multiplier method for constrained values of σ � .

set. The H1 experiment is a good case, because for
H1 we have detailed information about the correlated
uncertainties. But it may be somewhat fortuitous that
the χ2 per data point for CTEQ5m is so close to 1
for the H1 data set. In cases where χ2/N is not close
to 1, which can easily happen if the estimated sys-
tematic uncertainties are not textbook-like, we must
supply further arguments about confidence levels. For
experiments with many data points, like 172 for H1,
the chi-square distribution is very narrow, so a small
inaccuracy in the estimate of σ � may translate to a
large uncertainty in the calculation of confidence levels
based on the absolute value of χ2. Because the estima-
tion of experimental uncertainties introduces some un-
certainty in the value of χ2, it is not really the absolute
value of χ2 that is important, but rather the relative
value compared to the value at the global minimum.
Therefore, we might study ratios of χ2’s to interpret
the variation of χ2 with σ � .

6. Conclusions

It has been widely recognized by the HEP commu-
nity, and it has been emphasized at this workshop, that
PDF phenomenology must progress from the past prac-
tice of periodic updating of representative PDF sets to
a systematic effort to map out the uncertainties, both
on the PDFs themselves and on physical observables
derived from them. For the analysis of PDF uncer-
tainties, we have only addressed the issues related to
the treatment of experimental uncertainties. Equally
important for the ultimate goal, one must come to
grips with uncertainties associated with theoretical ap-
proximations and phenomenological parametrizations.
Both of these sources of uncertainties induce highly

correlated uncertainties, and they can be numerically
more important than experimental uncertainties in
some cases. Only a balanced approach is likely to
produce truly useful results. Thus, great deal of work
lies ahead.

This report described first results from two methods
for quantifying the uncertainty of parton distribution
functions associated with experimental uncertainties.
The specific work is carried out as extensions of the
CTEQ5 global analysis. The same methods can be
applied using other parton distributions as the starting
point, or using a different parametrization of the non-
perturbative PDFs. We have indeed tried a variety of
such alternatives. The results are all similar to those
presented above. The robustness of these results lends
confidence to the general conclusions.

The Hessian, or error matrix method reveals the
uncertainties of the shape parameters used in the func-
tional parametrization. The behavior of χ2

global in the
neighborhood of the minimum is well described by the
Hessian if the minimum is quadratic.

The Lagrange multiplier method produces con-
strained fits, i.e., the best fits to the global data set
for specified values of some observable. The increase
of χ2

global, as the observable is forced away from the
predicted value, indicates how well the current data
on PDFs determines the observable.

The constrained fits generated by the Lagrange mul-
tiplier method may be compared to data from individ-
ual experiments, taking into account the uncertainties
in the data, to estimate confidence levels for the con-
strained variable. For example, we estimate that the
uncertainty of σ � attributable to PDFs is ±3%.

Further work is needed to apply these methods
to other measurements, such as the W mass or the
forward-backward asymmetry of W production in pp̄
collisions. Such work will be important in the era of
high precision experiments.
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Abstract

We review the status of our effort to extract parton
distribution functions from data with a quantitative
estimate of the uncertainties.

1. Introduction

The goal of our work is to extract parton distribution
functions (PDF) from data with a quantitative estima-
tion of the uncertainties. There are some qualitative
tools that exist to estimate the uncertainties, see e.g.
Ref. [1]. These tools are clearly not adequate when
the PDF uncertainties become important. One crucial
example of a measurement that will need a quantitative
assessment of the PDF uncertainty is the planned high
precision measurement of the mass of the W -vector bo-
son at the Tevatron. Clearly, quantitative tools along
the line of S. Alekhin’s pioneer work [2] are needed.

The method we have developed in Ref. [3] is flexi-
ble and can accommodate non-Gaussian distributions
for the uncertainties associated with the data and the
fitted parameters as well as all their correlations. New
data can be added in the fit without having to redo the
whole fit. Experimenters can therefore include their
own data into the fit during the analysis phase, as
long as correlation with older data can be neglected.
Within this method it is trivial to propagate the PDF
uncertainties to new observables, there is for example
no need to calculate the derivative of the observable
with respect to the different PDF parameters. The
method also provides tools to assess the goodness of
the fit and the compatibility of new data with current
fit. The computer code has to be fast as there is a large
number of choices in the inputs that need to be tested.

It is clear that some of the uncertainties are difficult
to quantify and It might not be possible to quantify all
of them. All the plots presented here are for illustration
of the method only, our results are preliminary. At the
moment we are not including all the sources of uncer-
tainties and our results should therefore be considered
as lower limits on the PDF uncertainties. Note that all
the techniques we use can be found in books and papers
on statistics [4] and/or in Numerical Recipes [5].
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2. Outline of the Method

We only give a brief overview of the method in this
section. More details are available in Ref.[3]. Our
method follows the Bayesian methodology †. Once
a set of core experiments is selected, a large num-
ber of uniformly distributed sets of parameters λ ≡
λ1, λ2, . . . , λ  par (each set corresponds to one PDF)
can be generated and the probability density of the set
P (λ) calculated from the likelihood (the probability)
that the predictions based on λ describe the data, see
Ref. [4] and next section.

Knowing P (λ), then for any observable x (or any
quantity that depends on λ) the probability density,
P (x) can be evaluated, and using a Monte Carlo inte-
gration, the average value and the standard deviation
of x can be calculated with the standard expressions:

µ � =

∫ 


par∏

� =1

dλ �


 x(λ)P (λ)

σ2
� =

∫ 


par∏

� =1

dλ �


 (x(λ) − µ � )2P (λ). (1)

If P (x) is Gaussian distributed, then the standard
deviation is a sufficient measure of the PDF uncer-
tainties. If P (x) is not Gaussian distributed, then one
should refer to the distribution itself and not try to
“summarize” it by a single number, all the information
is in the distribution itself. The uncertainties due to
the Monte Carlo can also be calculated with standard
technique.

The above is correct but computationally inefficient,
instead we use a Metropolis algorithm, see Ref. [5], to
generate N �

��� unit-weighted PDFs distributed accord-
ing to P (λ). With this set of PDFs, the expressions in
Eq. 1 become:

µ � ≈ 1

N�
���


pdf∑

�
=1

x (λ � )

σ2
� ≈ 1

N�
���


pdf∑

�
=1

(x (λ� )− µ � )
2
. (2)

This is equivalent to importance sampling in Monte
Carlo integration techniques. It is very efficient be-
cause the number of PDFs needed to reach a given
level of accuracy in the evaluation of the integrals is
much smaller than when using a set of PDFs uniformly

†we also plan to present results within the “classical frequentist”
framework [6]

distributed. Given the unit-weighted set of PDFs, a
new experiment can be added to the fit by assigning
a weight (a new probability) to each of the PDFs, us-
ing Bayes’ theorem. The above summations become
weighted. There is no need to redo the whole fit if
there is no correlation between the old and new data.
If we know how to calculate P (λ) properly, the only
uncertainty in the method comes from the Monte-Carlo
integrations.

3. Calculation of P (λ)

Given a set of experimental points {x � } =
x
�
1, x

�
2, . . . , x

�
obs

the probability of a set of PDF is in
fact the conditional probability of {λ} given that {x � }
has been measured, this conditional probability can be
calculated using Bayes theorem:

P (λ) = P (λ|x � ) =
P (x

� |λ)

P (x
�
)
P � � � � (λ), (3)

where, as already mentioned, the prior distribution
of the parameters, P � � � � (λ), has been assumed to be
uniform. A prior sensitivity should be performed.
P (x

� |λ) is the likelihood, the probability to observe the
data given that the theory is fixed by the set of {λ} .
P (x

�
) is the probability density of the data (integrated

over the PDFs) and act as a normalization coefficient
in Eq. 3.

If all the uncertainties are Gaussian distributed, then
it is well known that:

P (x
� |λ) ≈ e−χ

2(λ)
2 , (4)

where χ2 is the usual chi-square:

χ2(λ) =


obs∑
� �
�

(
x
�
� − x � � (λ)

)
M

� � �
� �
(
x
�� − x �� (λ)

)
,
(5)

x
�
� (λ) are the theory prediction for the experimen-

tal observables calculated with the parameters {λ} .
The matrix M

� � �
is the inverse of the total covariance

matrix.
When the uncertainties are not Gaussian dis-

tributed, the result is not as well known. We first
present two simple examples to illustrate how the like-
lihood should be calculate and then give a generaliza-
tion.

3.1. The simplest example
We first consider the simplest example to setup the

notation, one experimental point with a statistical un-
certainty:
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x
�
(λ) = x

�
+ u∆, (6)

where u is a random variable that has it own dis-
tribution, f(u) (assumed to be Gaussian in this case).
By convention, we take the average of u equal to 0
and its standard deviation equal to 1. ∆ gives the size
of the statistical uncertainty. For each experimental
measurement there is a different value of u and x

�
.

The probability to find x
�

in an element of length dx
�

given that the theory is fixed by {λ} is equal to the
probability to find u in a corresponding element of
length du‡:

P (x
� |λ)dx

�
= f(u)du. (7)

The variable u and the Jacobian for the change of
variable from u to x

�
can be extracted from Eq. 6:

u =
x
�
(λ)− x �

∆
;

∣∣∣∣
du

dx
�

∣∣∣∣ =
1

∆
(8)

such that:

P (x
� |λ) =

f(
� t(

�
)− � e

∆ )

∆

=
1√

2π∆
e−

(xt−xe)2

2∆2 . (9)

This is the expected result.

3.2. A simple example
We now consider the case of one experimental point

with a statistical and a systematic uncertainty:

x
�
(λ) = x

�
+ u1∆1 + u2∆2 (10)

∆1 and ∆2 give the size of the uncertainties. u1

and u2 have their own distribution f1(u1) and f2(u2)
and we use the same convention for their average and
standard deviation as for u in the first example. This
time for each experimental measurement, there is an
infinite number of sets of u1, u2 that correspond to
it, because there is only one equation that relate x

�
,

x
�

and u1 and u2. The probability to find x
�

in an
element of length dx

�
given that the theory is fixed by

{λ} is here equal to the probability to find u1 and u2

‡the repetition of the experiment will only be distributed ac-
cording to u around the true nature value of xt. However we are
trying to calculate the likelihood, the conditional probability of
the data given that the true nature value of xt is given by the
value of the {λ} under study

in a corresponding element of area du1 du2, with an
integration over one of the two variables:

P (x
� |λ)dx

�
= du1

∫
du2f

1(u1)f2(u2). (11)

We choose to integrate over u2. u1 and the Jacobian
for the change of variable from u1 to x

�
are given by

Eq. 10:

u1 =
x
� − x � − u2∆2

∆1
;

∣∣∣∣
du1

dx
�

∣∣∣∣ =
1

∆1
(12)

such that:

P (x
� |λ) =

∫
du2f

2(u2)
f1(

� t− � e− � 2∆2

∆1
)

∆1
(13)

If both f1(u1) and f2(u2) are Gaussian distribution
then we recover the expected result, as in Eq 4. Note
that this expected result is recovered if the uncertain-
ties are Gaussian distributed and the relationship be-
tween the theory, the data and the uncertainties are
given by Eq. 10. If that relationship is more complex
there is no guarantee to recover Eq. 4. In the general
case, the integral in Eq. 13 has to be done numerically.

3.3. Generalization:
We are now ready to give a generalization of the

calculation of the likelihood. We are considering N
�����

observables, and N � � � uncertainties (statistical and
systematic) parametrized by N � � � random variables
{u} = u1, u2, . . . , u  unc with their own distributions,
f
�
(u � ).
There areN

� ���
relations between {x � }, {x � } and {u},

one for each observable:

F � (x
�
� , {x

�
(λ)}, {u}) = 0. (14)

This givesN � � � −N � ���
independent u � that we choose

by convenience to be the u′� s corresponding to the
systematic uncertainties. Without loosing generality
we assume that there is one statistical uncertainty
for each observable, and we organize the correspond-
ing u � with the same index as x

�
� , such that the last

N
�����

(= N � � � − N � ���
) u � are the random variables for

the systematic uncertainties. For each set of measured
{x � } there is an infinite number of {u} sets that cor-
respond to it.

The probability to find {x � } in an element of volume∏ 
obs

� =1 dx
�
� given that the theory is fixed by {λ} is equal

to the probability to find the {u} in a corresponding
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element of volume
∏ 

unc
� =1 dx � , with an integration over

the independent u � § :

P ({x � }|λ)


obs∏

� =1

dx
�
� = (


obs∏

�
=1

du � )

∫
(


unc∏

� =  obs+1

du � )

∗

unc∏

�
=1

f
�
(u � ) (15)

The values of the {u � , i = 1, N
� ��� } (corresponding to

the statistical uncertainties) and the Jacobian, J(u→
x
�
), for the change of variable from those u � to the

x
�
� can be extracted from the N

� ���
relations in Eq. 14.

The likelihood is then given by:

P ({x � }|λ) =

∫
(


unc∏

� =  obs+1

du � )


unc∏

�
=1

f
�
(u � )J(u→ x

�
) (16)

Often, the F � relationship in Eq 14 have a simple
dependence on {x � } and the u′s corresponding to the
statistical uncertainties:

F � (x
�
� , {x

�
(λ)}, {u}) = x

�
� + u � ∆ � + · · · , (17)

where the ∆ � are the size of the statistical uncertain-
ties. In that case, the Jacobian is simply given by:

J(u→ x
�
) =


obs∏

� =1

1

∆ �
(18)

In most cases, the likelihood will not be analytically
calculable, and has to be calculated numerically again
with Monte Carlo technique.

In order to be able to calculate the likelihood we
therefore need:

• the relations between {x � }, {x � } and {u} as in
Eq. 14.

• the probability distribution of the random vari-
able associated with the uncertainties: f

�
(u � ).

Unfortunately most of the time that information is
not reported by the experimenters, and/or is not avail-
able and certainly difficult to extract from papers. It is
only in the case that all the uncertainties are Gaussian
distributed ¶ that it is sufficient to report the size of the

§if there are correlations between the ui replace
∏Nunc
j=1

fj(uj)

by f(u1, u2, ..., uNobs) the global probability distribution of the
{u}
¶or can be considered as Gaussian distributed, see later

uncertainties and their correlation ‖. This is a very im-
portant issue, simply put, experiments should always
provide a way to calculate the likelihood, P ({x � }|λ).
This last fact was also the unanimous conclusion of a
recent workshop on confidence limits held at CERN [7].
This is particularly crucial when combining different
experiments together: the pull of each experiment will
depend on it and, as a result, so will the central values
of the deduced PDFs.

3.4. The central limit theorem
Assuming that the uncertainties are Gaussian dis-

tributed when they are not can lead to some serious
problems. For example, minimizing the χ2 constructed
assuming Gaussian distribution will not even maximize
the likelihood. Indeed in the general case, the usually
defined χ2 will not appear in the likelihood.

It is often assumed that the central limit theorem
can be used to justify the assumption of Gaussian dis-
tribution for the uncertainties. It is therefore useful to
revisit this theorem. Y is a linear combination of n
independent X � :

Y =
∑

�
c � X � (19)

σ2
	 =

∑

�
c2� σ

2�
i

where the c � are constants and the σ are the standard
deviations. The theorem states that in the limit of
large n the distribution of Y will be approximately
Gaussian if σ2

	 is much larger than any component
c2� σ2�

i
from a non-Gaussian distributed X � . For some

examples of how large n has to be, see Ref. [4].
Here is one way the theorem could be used: If the

F � relations are given by:

x
�
� (λ) = x

�
� +


unc∑
�
=1

u � ∆ � �

and if there is a large number of uncertainties, the
u � are independent and none of the ∆ � � for a non-
Gaussian-like u � dominate then we know that the sum
will be approximately Gaussian distributed. One way
to express this fact is simply to assume that all the
uncertainties are Gaussian distributed. In this case,
we recover the usual expression for the likelihood.

A direct consequence is that if there are a few un-
certainties that dominate a measurement, then we cer-
tainly need to know their distribution. See Ref. [8], for
an example of a non-Gaussian dominant uncertainty
in a real life experiment.

‖with an explicit statement that the uncertainties can be as-
sumed to be Gaussian distributed
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3.5. Luminosity Uncertainty
We now turn to the calculation of the likelihood

when there is a normalization uncertainty, like the
Luminosity uncertainty. The F relation of Eq. 14 is
given by:

Lλ = x
�

+ u1∆1, (20)

where we have assumed that we are measuring the
parameter directly, x

�
= λ. The Luminosity, L, has

also an uncertainty:

L = L0 + u2∆2. (21)

We assume that both u1 and u2 are Gaussian dis-
tributed. Replacing Eq. 21 in Eq. 20, we obtain:

L0λ− x
�

= u1∆1 − u2∆2x
�
. (22)

This expression shows that L0λ − x
�

is the sum of
two Gaussian, such that the likelihood is a Gaussian
distribution with the standard deviation given by:

σ2 = ∆2
1 + (∆2x

�
)2. (23)

The systematic uncertainty due to the Luminosity un-
certainty is proportional to the theory. Explicitly:

P (x
� |λ) =

1√
2π
√

∆2
1 + (∆2λ)2

e
− (L0λ−xe)2

2(∆2
1
+(∆2λ)2)

(24)

This result can also be derived from the general ex-
pression of the likelihood, after doing the appropriate
integral analytically.

A few remarks are in order. In this case, even though
all the uncertainties are Gaussian distributed, the min-
imization of the χ2 would not maximize the likelihood
because the theory appears in the normalization of the
likelihood. Another mistake that leads to problems in
this case is to replace λ by x

�
/L0 in the uncertainty.

This mistake leads to a downwards bias. If x
�

has a
downward statistical fluctuation, a smaller systematic
uncertainty is assigned to it, such that when it is com-
bined with other measurements, it is given a larger
weight than it should.

This example shows clearly that we have to know if
the uncertainties are proportional to the theory or to
the experimental value. Assuming one when the other
is correct can lead to problems. It is clear that many
other systematic uncertainties depend on the theory
and that should also be taken into account.

4. Sources of uncertainties

There are many sources of uncertainties beside the
experimental uncertainties. They either have to be

shown to be small enough to be neglected or they need
to be included in the PDF uncertainties. For exam-
ples: variation of the renormalization and factorization
scales; non-perturbative and nuclear binding effects;
the choice of functional form of the input PDF at the
initial scale; accuracy of the evolution; Monte-Carlo
uncertainties; and dependence on theory cut-off.

5. Current fit

Draconian measures were needed to restart from
scratch and re-evaluate each issue. We fixed the renor-
malization and factorization scales, avoided data af-
fected by nuclear binding and non-perturbative effects,
and use a MRS-style parametrization for the input
PDFs. The evolution of the PDFs is done by Mellin
transform method, see Ref. [9]. All the quarks are con-
sidered massless. We imposed a positivity constraint
on F2. A positivity constraint on other “observables”
could also be imposed.

At the moment we are using H1 and BCDMS (proton
data) measurement of F

�

2 for our core set. In order
to be able to use these data we have to assume that
all the uncertainties are Gaussian distributed ∗∗. We
then can calculate the χ2(λ) and P (λ) (≈ exp−χ2/2)
with all the correlations taken into account ††. We
generated 50000 unit-weighted PDFs according to the
probability function. For 532 data points, we obtained
a minimum χ2 of 530 for 24 parameters. We have
plotted in Fig. 1, the probability distribution of some
of the parameters. Note that the first parameter is α

�
.

The value is smaller than the current world average.
However, it is known that the experiments we are using
prefer a lower value of this parameter, see Ref. [10], and
as already pointed out, our current uncertainties are
lower limits. Note that the distribution of the param-
eter is not Gaussian, indicating that the asymptotic
region is not reached yet. In this case, the blind use
of the so-called chi-squared fitting method might be
misleading.

From this large set of PDFs, it is straightforward
to plot, for example, the correlation between different
parameters and to propagate the uncertainties to other
observables. In Fig. 2, the correlation between α

�
and

λ
�

is presented. λ
�

parametrizes the small Bjorken-
x behavior of the gluon distribution function at the
initial scale: xg(x) ∼ x−

�
g . The lines are constant

probability density levels that are characterized by a
percentage, α, which is defined such that 1− α is the
ratio of the probability density corresponding to the

∗∗no information being given about the distribution of the
uncertainties
††here we assumed that none of the systematic uncertainties
depend on the theory

180



Figure 1. Plot of the distribution (black histograms) of four of the parameters. The first one is α
�
, the strong

coupling constant at the mass of the Z-boson. The line is a Gaussian distribution with same average and standard
deviation as the histogram

Figure 2. Correlation between two of the parameters:
α
�

and λ
�
, see the text for their definition. Constant

probability density levels are plotted.

level to the maximum probability density.
In Fig. 3, we show the correlation between two

observables, the production cross sections for the W
and Z vector bosons at the Tevatron along with the
experimental result from CDF. The constant probabil-
ity density levels are shown. The agreement between
the theory and the data is qualitatively good.

In Fig. 4, we present data-theory for the lepton
charge asymmetry in W decay at the Tevatron. The
data are the CDF result [11] and the theory correspond
to the average value over the PDF sets for each data
point, as defined in Eq. 1. The dashed line are the
theory plots corresponding to the one standard devi-
ation over the PDF sets, also defined in Eq. 1. The

Figure 3. Correlation between the production cross
sections for the W and Z vector bosons at the Teva-
tron, σ � and σ � (in nbarns, includes leptonic branch-
ing fraction). The solid and dashed lines show the
constraint due to the CDF measurement of the cross
section ratio.

inner error bars are the statistical and systematic un-
certainties added in quadrature‡‡. The outer error bar
correspond to the experiment and theory uncertainties
added in quadrature. The theory uncertainty is the un-
certainty associated with the Monte-Carlo integration,
the factorization and renormalization scale dependence
are small and can be neglected. 5000 PDFs were used

‡‡The distribution of the uncertainties and the point to point
correlation of the systematic uncertainties were not published
such that we had to assume Gaussian uncertainties and no
correlation
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Figure 4. Data-theory for the lepton charge asymmetry
in W decay at the Tevatron.

to generate this plot. It is well known that the data
we have included so far in our fit mainly constraint the
sum of the quark parton distribution weighted by the
square of the charges. The lepton charge asymmetry
is sensitive to the ratio of up-type to down-type quark
and is therefore not well constraint. We can add this
data set by simply weighting each PDF from our set
with the likelihood of the new data. The resulting new
range of the theory (calculated with weighted sums) is
given by the band of solid curves in Fig 4.

The effect of the inclusion of the lepton charge asym-
metry can be seen in Fig. 5, where the correlation
between the W and the Z cross section is shown again
but for the weighted PDFs. The agreement with the
data is better than before, but the probability density
has now two maxima.

It has been argued that for Run II at the Tevatron,
the measurement of the number of W and Z produced
could be used as a measurement of the Luminosity.
That of course requires the knowledge of the cross sec-
tion with a small enough uncertainties. In Fig. 6, the
luminosity probability distribution is presented for the
unit-weighted and weighted PDF sets along with the
the luminosity used by CDF. The plot for the weighted
set has also two maxima, has in Fig. 5.

5.1. Conclusions
In conclusion, we remind the reader again that

all the results should be taken as illustration of the
method and that not all the uncertainties have been
included in the fitting.

Figure 5. Same as in Fig. 3 for the weighted PDFs.
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Figure 6. Probability distribution of the luminosity
(run1a in pb−1) for the unit-weighted (right plot) and
weighted (middle plot) PDFs, compared to the value
used by CDF (left plot).

EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE

INCLUSIVE JET CROSS SECTION.

R. Hirosky
University of Illinois, Chicago, IL 60607

1. Introduction

This workshop has been an important channel of
communication between those performing global par-
ton distribution function (pdf) fits and the experimen-
tal groups who provide the data at the Tevatron. In
the particular case of jets analyses we have initiated
a detailed dialog on the sources and distributions of
experimental uncertainties. As part of my participa-
tion in the workshop, I have used the DØ inclusive
jet cross section as an example of a jet measurement
with a complex ensemble of uncertainties and have
provided descriptions of each component uncertainty.
Such dialogs will prove crucial in obtaining the best
constraints on allowable pdf models from the data.

2. Uncertainties on the CDF and DØ inclusive
jet cross sections

In the first meeting we summarized the jet inclu-
sive cross section measurements from the DØ [1] and
CDF [2] experiments. In particular, we illustrated
the major corrections applied to the data, namely jet

E � scale and E � resolution corrections, as well as the
derivation methods for these corrections employed by
each experiment. To review these methods see [3]-[4]
and references therein.

The uncertainties by component in the CDF and
DØ inclusive jet cross sections are shown in Figs.1-2.
Each component of the uncertainty reported for the
CDF cross section is taken to be completely corre-
lated across jet E � , while individual components are
independent of one another. The DØ uncertainties
(shown here symmetrized) are also independent of one
another, however each component may be either fully
or partially correlated across jet E � . In the case of the
energy scale uncertainty the band shown is constructed
from eight subcomponents.
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Figure 1. Uncertainties by component in the CDF
inclusive jet cross section,
1/(∆η∆E � )

∫ ∫
d2σ/(dE � dη)dE � dη, 0.1 < |η| < 0.7

2.1. Comparisons with theory
The two experiments have used various means to

compare their measurements to theoretical predictions.
CDF has published a comparison of their cross sec-
tion to a next-to-leading order (NLO) QCD calcula-
tion using a variety of pdf models by means of var-
ious normalization-insensitive, shape-dependent sta-
tistical measures [2] (Kolmogorov-Smirnov, Cramèr-
VonMises, Anderson-Darling). DØ has formulated a
covariance matrix using each uncertainty component
in the cross section and its E � correlation information
and employed a χ2 test to compare to NLO QCD [1].
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Figure 2. Uncertainties by component in the DØ
inclusive jet cross section,
1/(∆η∆E � )

∫ ∫
d2σ/(dE � dη)dE � dη, |η| < 0.5

It is difficult to generalize the various shape statist-
ics to include non-trivial correlations in the systematic
uncertainties and although correlations may be easily
added to a covariant error matrix χ2 tests can show
biases when faced with correlated scale errors. Ref-
erence [6] illustrates how correlated scale errors may
lead to biases in parameter estimation by noting that
systematic errors reported as a fraction of the observed
data can be evaluated as artificially small when applied
to a point that fluctuates low. This bias may be mit-
igated by parameterizing the systematic scale errors
as percentages of a smooth model of the data or by
placing them on the smooth theory directly (see con-
tributions to these proceedings by W. Giele, S. Keller,
and D. Kosower).

Other difficulties arise in interpretation of χ2 proba-
bilities when uncertainties show large correlations. The
probability that a prediction agrees with the data for
a given χ2 is calculated assuming that the χ2 follows
the distribution:

f(x;n) =
(x)( �

�
2−1)exp(x/2)

2( �
�
2)Γ(n/2)

(1)

where n is the number of degrees of freedom of the
data set. The probability of getting a worse value of
χ2 than the one obtained for the comparison is given
by:

P (χ2;n) =

∫ ∞
� 2

f(x;n)dx (2)

Hence, to verify the accuracy of the probabilities
quoted in the recent DØ cross section papers (inclusive
jet cross section [1] and dijet mass spectrum [7]), the χ2

distribution may be compared to Equation 1 with the
appropriate number of degrees of freedom. The χ2 dis-
tribution for the DØ dijet mass spectrum was tested by
developing a Monte Carlo program [8] that generates
many trial experiments based an ansatz cross section
determined from the best smooth fit to the data (with
a total of 15 bins, or 15 degrees of freedom). The first
step generated trials based on statistical fluctuations
taking the true number of events per bin as given by
the ansatz cross section. The trial spectra were then
generated for each bin according to Poisson statistics.
The χ2 for each of these trials was calculated using the
difference between the true and the generated values.
Figure 3 (solid curve) shows the χ2 distribution for all
of the generated trials. The distribution agrees well
with Equation 1 for 15 degrees of freedom. The next
step assumes that the uncertainties correlated as in
the measurement of the dijet mass cross section. Trial
spectra are generated using these uncertainties to gen-
erate a χ2 distribution (see the dotted curve in Fig. 3).
It is clear that χ2 distribution very similar to the curve
predicted by Equation 1. Hence, any probability gen-
erated using Equation 2 will be approximately correct.
The resulting χ2 distribution was fitted by Equation 1
and the resulting fit is consistent with the distribution
if 14.6 degrees of freedom are assumed.
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Figure 3. χ2 distribution for random fluctuations
around the nominal DØ Dijet Mass cross section.
(Solid) Errors are fluctuated as uncorrelated. (Dashed)
E � correlations are included.
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A similar test using the DØ inclusive jet cross section
finds the distributions shown in Fig. 4. The two distri-
butions agree well for χ2 values below approximately
15 and then begin to diverge slowly. The distribu-
tion based on the cross section uncertainties includes
a larger tail than the χ2 distribution generated with
the wholly uncorrelated uncertainties, implying that
probabilities based on a χ2 analysis will be slightly un-
derestimated. See also the talks by B. Flaugher in this
workshop for additional observations and comments on
χ2 analyses.
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Figure 4. χ2 distribution for random fluctuations
around the nominal DØ inclusive jet cross section.
(Solid) errors are fluctuated as uncorrelated. (Dashed)
E � correlations are included.

3. Beyond the Normal assumption

Independent of any difficulties due to correlated un-
certainties, a χ2 test necessarily relies on the assump-
tion that the uncertainties follow a normal distribution.
This may be a reasonable approximation in some cases.
Upon close inspection we expect this assumption to
be generally false for most rapidly varying observables
(i.e. steeply falling cross section measurements). Per-
haps, as in the most obvious case, some experimental
uncertainties will simply be non-Gaussian in their dis-
tribution and furthermore symmetric uncertainties in
the abscissa variable will develop into asymmetric un-
certainties when propagated through to the measured
distribution. The latter case is illustrated as follows.

Consider an E � -independent jet E � scale error of 2%.
What is it’s effect on an inclusive jet cross section
versus E � ? Jets are shifted bin-to-bin by fluctuating
their E � values within the 2% range and as a result of
the steeply falling cross section, more jets from low E �

values are shifted into higher E � bins by one extreme
of this scale uncertainty than the in reverse shift for
higher E � jets. Figure. 5 shows how a flat 2% E � scale
uncertainty alters the measured cross section using a
smooth fit to the DØ data as the nominal cross section
model. In general the degree of this asymmetry will
depend on the steepness of the measured distribution.
In order to define a covariance matrix, such errors are
typically symmetrized.
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Figure 5. Example of a 2% E � scale error propagated
through an inclusive jet cross section measurement.

The use of an approximate covariance matrix will
also result in a loss of sensitivity when errors are shown
to follow distributions with tails smaller than in a nor-
mal distribution. As an example we show a correction
factor with uncertainties of this type from the DØ jet
cross section analysis in Fig. 6. This figure shows the
hadronic response correction for jets as a function of
jet energy. The correction is derived from an analysis
of γ + jet data [4]. The bands delimit regions that
contain ensembles of deviations from the nominal re-
sponse within certain confidence limits. It is evident
that in this case assuming the uncertainty follows a
normal distribution with variance equal to the 68%
limits shown will tend of underestimate the sensitivity
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of the data for excluding certain classes of theories.
Figure 7 shows the range of cross section uncertainty
due to the response component only as a function of
confidence level for several E � values of the DØ cross
section.
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Figure 6. DØ Jet response correction versus Energy.
The outer bands show the extreme deviation in re-
sponse at a given confidence level as a function of jet
energy.

4. Application to pdf constraints

In this workshop W. Giele, S. Keller, and D. Kosower
have reported on a method for extracting pdf distribu-
tions with quantitative estimates of pdf uncertainties.
In effect their method [5] uses a Bayesian approach that
integrates sets of pdf parameterizations over properly
weighted samples of experimental uncertainties to pro-
duce a set of pdf models consistent with the data within
a given confidence level. The basic method may be
extended to use data with arbitrary error distributions
and correlations. For such methods to function reliably
the experiments must be able to provide detailed de-
scriptions of their error distributions. Giele et al. make
a distinction between ‘errors on the data’ and ‘errors on
the theory’ for estimation of the most likely pdf models.
In this context we take only uncertainties depending
directly on the number of events in a bin as ‘errors on
the data’. Other typical sources of uncertainty, lumi-
nosity, energy scale, resolution, etc., may be treated as
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Figure 7. DØ response uncertainty propagated
through the inclusive jet cross section measurement at
various E � values. The solid bands represent extreme
variations at various confidence levels. The dashed
bands illustrate the overestimation of these variations
by using a Gaussian approximation.

‘errors on the theory’ in that they are in some sense
independent of the statistical precision of the data and
represent how an underlying, true, distribution may be
distorted by observation in the experiment.

As a result of these dialogs, we have revisited the DØ
response uncertainty (our largest uncertainty in the in-
clusive jet cross section measurement) from Fig. 6 and
generated a sampling of the probability density func-
tion for distributions in it parameters. This probability
density function contains all the relevant information
on both the shape of the uncertainty distribution and
point-to-point correlations. It is clear that providing
such information is a significant enhancement from tra-
ditional methods of summarizing experimental uncer-
tainties. Optimum utilization of the data demands a
detailed understanding and reporting of its associated
uncertainties. Through our fruitful discussions in this
workshop, we look forward to setting an example for
the reporting of experimental uncertainties and to fully
exploiting our cross section data in pdf analyses in the
near future.
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Abstract

Parton densities are important input parameters for
SUSY particle cross section predictions at the Teva-
tron. Accurate theoretical estimates are needed to
translate experimental limits, or measured cross sec-
tions, into SUSY particle mass bounds or mass de-
terminations. We study the PDF dependence of
next-to-leading order cross section predictions, with
emphasis on a new set of parton densities [1]. We com-
pare the resulting error to the remaining theoretical
uncertainty due to renormalization and factorization
scale variation in next-to-leading order SUSY-QCD.

1. Introduction

The search for supersymmetric particles is among
the most important endeavors of present and future
high energy physics. At the upgraded pp̄ collider Teva-
tron, the searches for squarks and gluinos (and espe-
cially the lighter stops and sbottoms), as well as for
the weakly interacting charginos and neutralinos, will
cover a wide range of the MSSM parameter space [2,3].

The hadronic cross sections for the production of
SUSY particles generally suffer from unknown theo-
retical errors at the Born level [4]. For strongly in-
teracting particles the dependence on the renormaliza-
tion and factorization scale has been used as a mea-
sure for this uncertainty, leading to numerical ambigu-
ities of the order of 100%. For Drell-Yan type weak
production processes the dependence on the factoriza-
tion scale is mild. However, a comparison of leading
and next-to-leading order predictions [5] reveals that
the impact of higher-order corrections is much larger
than the estimate through scale variation would have
suggested. The use of next-to-leading order calcula-
tions [5–7] is thus mandatory to reduce theoretical un-
certainties to a level at which one can reliably extract
mass limits from the experimental data.
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part by the University of Wisconsin Research Committee with
funds granted by the Wisconsin Alumni Research Foundation
‡Supported in part by the EU Fourth Framework Programme
‘Training and Mobility of Researchers’, Network ‘Quantum
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In addition to the scale ambiguity and the impact of
perturbative corrections beyond next-to-leading order,
hadron collider cross section are subject to uncertain-
ties coming from the parton densities and the asso-
ciated value of the strong coupling. Previously, the
only way to estimate the PDF errors was to compare
the best-fit results from various global PDF analyses.
Clearly, this is not a reliable measure of the true un-
certainty. As a first step towards a more accurate error
estimate, the widely used sets CTEQ [8] and MRST [9]
now offer different variants of PDF sets, e.g. using
different values of the strong coupling constant. In this
letter we compare their predictions to the preliminary
GKK parton densities [1], which provide a systematic
way of propagating the uncertainties in the PDF de-
termination to new observables.

2. Stop Pair Production

For third generation squarks the off-diagonal left-
right mass matrix elements do not vanish, but lead to
mixing stop (and sbottom) states. The lighter mass
eigenstate, denoted as t̃1, is expected to be the lightest
strongly interacting supersymmetric particle. More-
over, its pair production cross section, to a very good
approximation, only depends on the stop mass, in con-
trast to the light flavor squark production. Neverthe-
less, considering the different decay channels compli-
cates the analyses [3,10]. At the Tevatron the fraction
of stops produced in quark-antiquark annihilation and
in gluon fusion varies strongly with the stop mass.
Close to threshold the valence quark luminosity is dom-
inant, but for lower masses a third of the hadronic cross
section can be due to incoming gluons [7].

In Figure 1 we compare the total t̃1-pair production
cross sections for three sets of parton densities: only for
incoming quarks do the CTEQ4 and MRST99 results
lie on top of each other. For gluon fusion the corre-
sponding cross sections differ by ∼ 10%. The GKK set
centers around a significantly smaller value. This is in
part due to the low average value 〈α �

(GKK)〉 = 0.108,
which is expected to increase after including more
experimental information in the GKK analysis. But
even the normalized cross section σ/α2� is still smaller
by 35% compared to CTEQ4 and MRST99 because
of the entangled fit of the strong coupling constant
and the parton densities. However, the width of the
Gaussian fit to the GKK results gives an uncertainty
of 2% and 8% for the quark-antiquark and gluon fusion
channel, similar to the difference between CTEQ4 and
MRST99.

For heavier stop particles, Figure 2, the gluon lu-
minosity is strongly suppressed due to the large final
state mass, and mainly valence quarks induced pro-

cesses contribute to the cross section. The Gaussian
distribution of the GKK results has a width of ∼ 2%.
The comparably large difference between CTEQ4 and
MRST99 is caused by the small fraction of gluon in-
duced processes, since the gluon flux at large values of
x differs for CTEQ4 and MRST99 by approximately
40%.

3. Chargino/Neutralino Production

The production of charginos and neutralinos at the
Tevatron is particularly interesting in the trilepton
χ̃0

2χ̃
±
1 and the light chargino χ̃+

1 χ̃
−
1 channels [11].

The next-to-leading order corrections to the cross sec-
tions [5] reduce the factorization scale dependence, but
at the same time introduce a small renormalization
scale dependence. A reliable estimate of the theoret-
ical error from the scale ambiguity will thus only be
possible beyond next-to-leading order.

The Gaussian distribution of the GKK parton
densities for light chargino pairs is shown in Fig-
ure 3. For the chosen mSUGRA parameters (m0 =
100 GeV, A0 = 300 GeV,m1

�
2 = 150 GeV) the width is

∼ 2%, as one would expect from the quark-antiquark
channel of the stop production. But in contrast to
the stop production, where all quark luminosities add
up, the chargino/neutralino channels can be extremely
sensitive to systematic errors in different parton den-
sities due to destructive interference between s and t
channel diagrams. The total trilepton cross section for
example will therefore be a particular challenge for a
reliable error estimate.

4. Outlook

We have briefly reviewed the status of the theo-
retical error analysis of SUSY cross sections at the
Tevatron. For strongly interacting final state parti-
cles, the inclusion of next-to-leading order corrections
reduces the renormalization and factorization scale am-
biguity to a level ∼< 10% where the size of the PDF
errors becomes phenomenologically relevant. We have
compared different recent PDF sets provided by the
CTEQ [8] and MRST [9] collaborations to the prelimi-
nary GKK parton densities [1]. The large spread in the
cross section predictions can mainly be attributed to
the low average value of the strong coupling associated
with the GKK sets. We expect this spread to be re-
duced once more data have been included in the GKK
analysis and the corresponding average value of the
strong coupling becomes closer to the world average.
For weak supersymmetric Drell-Yan type processes [5]
the scale dependence at NLO cannot serve as a mea-
sure for the theoretical error since the renormalization
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scale dependence is only introduced at NLO. The PDF
induced errors for e.g. the case of χ̃+

1 χ̃
−
1 production are

small; however, interference effects between the differ-
ent partonic contributions must be taken into account.

The recently available variants of PDF sets provided
by CTEQ and MRST and, in particular, the GKK
parton densities allow for the first time a systematic
exploration of PDF uncertainties for the prediction of
SUSY particle cross sections. The preliminary GKK
results do not yet allow a conclusive answer, but they
point the way towards a complete and reliable error
analysis in the near future.
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Rev. D55 (1997) 6975; W. Beenakker, R. Höpker,
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Figure 1. NLO production cross section for a light
stop. The Gaussian fits the preliminary GKK parton
densities. The renormalization/factorization scale is
varied around the average final state mass.
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ier stop, dominated by incoming valence quarks. The
Gaussian fits the preliminary GKK parton densi-
ties. The renormalization/factorization scale is varied
around the average final state mass.
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Abstract

Parton distribution functions are determined by the
comparison of finite-order calculations with data. We
briefly discuss the interplay of higher order corrections
and PDF determinations, and the use of soft-gluon
resummation in global fits.

1. Factorization & the nlo model

A generic inclusive cross section for the process A+
B → F + X with observed final-state system F , of
total mass Q, can be expressed as

Q4 dσ
��� → � �

dQ2
= φ � � � (x � , µ2) ⊗ φ � � � (x

�
, µ2)

⊗ σ̂ � � → � � (z,Q, µ) , (1)

with z = Q2/x � x
�
S. The σ̂ � � are partonic hard-

scattering functions, σ̂ = σBorn +(α
�
(µ2)/π)σ̂(1) + . . . .

They are known to NLO for most processes in the stan-
dard model and its popular extensions. Corrections
begin with higher, uncalculated orders in the hard
scattering, which respect the form of Eq. (1). The dis-
cussion is simplified in terms of moments with respect
to τ = Q2/S,

σ̃ ��� → � � =

∫ 1

0

dτ τ
 −1 Q4 dσ ��� → � � /dQ2

=
∑

� �
�
φ̃ � � � (N,µ2) σ̃ � � → � � (N,Q, µ) φ̃ � � � (N,µ2) , (2)

†This work was supported in part by the National Science Foun-
dation, grant PHY9722101.

where the moments of the φ’s and σ̂ � � → � � are defined
similarly.

Eqs. (1) and (2) are starting-points for both the de-
termination and the application of parton distribution
functions (PDFs), φ � �

� , using 1-loop σ̂’s [1–3] We may
think of this collective enterprise as an “NLO model”
for the PDFs, and for hadronic hard scattering in gen-
eral. For precision applications we ask how well we
really know the PDFs [4–6]. Partly this is a ques-
tion of how well data constrain them, and partly it
is a question of how well we could know them, given
finite-order calculations in Eqs. (1) and (2). We will
not attempt here to assign error estimates to theory.
We hope, however, to give a sense of how to distin-
guish ambiguity from uncertainty, and how our partial
knowledge of higher orders can reduce the latter.

2. Uncertainties, schemes & scales

It is not obvious how to quantify a “theoretical un-
certainty”, since the idea seems to require us to esti-
mate corrections that we haven’t yet calculated. We do
not think an unequivocal definition is possible, but we
can try at least to clarify the concept, by considering
a hypothetical set of nucleon PDFs determined from
DIS data alone [4]. To make such a determination,
we would invoke isospin symmetry to reduce the set of
PDF’s to those of the proton, φ � ��� , and then measure a
set of singlet and nonsinglet structure functions, which
we denote F ( � ). Each factorized structure function may
be written in moment space as

F̃ ( � )(N,Q) =
∑

�
C̃( � )� (N,Q, µ) φ̃ � ��� (N,µ2) , (3)

in terms of which we may solve for the parton distri-
butions by inverting the matrix C̃,

φ̃ � ��� (N,µ2) =
∑

�
C̃−1( � )� (N,Q, µ) F̃ ( � )(N,Q) . (4)

With “perfect” F̃ ’s at fixed Q, and with a specific
approximation for the coefficient functions, we could
solve for the moment-space distributions numerically,
without the need of a parameterization. In a world
of perfect data, but of incompletely known coefficient
functions, uncertainties in the parton distributions
would be entirely due to the “theoretical” uncertainties
of the C’s:

δφ̃ � ��� (N,µ) =
∑

�
δC̃−1( � )� (N,Q, µ) F̃ ( � )(N,Q) . (5)

Our question now becomes, how well do we know the
C’s? In fact this is a subtle question, because the
coefficient functions depend on choices of scheme and
scale.
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Factorization schemes are procedures for defining co-
efficient functions perturbatively. For example, choos-
ing for F2 the LO (quark) coefficient function in Eq. (4)
defines a DIS scheme (with C̃ independent of µ, which
is then to be taken as Q in φ̃). Computing the C’s
from partonic cross sections by minimal subtraction to
NLO defines an NLO MS scheme, and so on. Once the
choices of C’s and µ are made, the PDF’s are defined
uniquely.

Evolution in an MS or related scheme, enters
through

µ
d

dµ
φ̃ � �

� (N,µ2) = −Γ � � (N,α
�
(µ2)) φ̃ � �

� (N,µ2)

µ
d

dµ
C̃( � )

� (N,Q, µ) = C̃
( � )� (N,Q, µ) Γ � � (N,α

�
(µ2)) . (6)

In principle, by Eq. (6), the scale-dependence of the

C
( � )� exactly cancels that of the PDFs in Eq. (3) and,

by extension, in Eq. (1). This cancelation, however,
requires that each C and the anomalous dimensions Γ
be known to all orders in perturbation theory.

To eliminate µ-dependence up to order α
� +1� , we

need σ̂ to order α
� � and the Γ � � to α

� +1� . One-loop
(NLO) QCD corrections to hard scattering require
two-loop splitting functions, which are known. The
complete form of the NNLO splitting functions, is still
somewhere over the horizon [7]. Even when these are
known, it will take some time before more than a
few hadronic hard scattering functions are known at
NNLO.

We can clarify the role of higher orders by relating
structure functions at two scales,Q0 and Q. Once we
have measured F (N,Q0), we may predict F (N,Q) in
terms of the relevant anomalous dimensions and coef-
ficient functions by

F (N,Q) = F (N,Q0) e

∫
Q

Q0

dµ′
µ′ Γ(

 � �
s(
� ′2))

×
[
C̃(N,Q,Q)

C̃(N,Q0, Q0)

]
. (7)

This prediction, formally independent of PDFs and
independent of the factorization scale, has corrections
from the next, still uncalculated order in the anoma-
lous dimension and in the ratio of coefficient functions.
The asymptotic freedom of QCD gives a special role
to LO: only the one-loop contribution to Γ diverges
with Q in the exponent, and contributes to the lead-
ing, logarithmic scale breaking. NLO corrections al-
ready decrease as the inverse of the logarithm of Q,
NNLO as two powers of the log. Thus, the theory is
self-regulating towards high energy, where dependence
on uncalculated pieces in the coefficients and anoma-
lous dimensions becomes less and less important.

The general successes of the NLO model strongly
suggest that relations like (7) are well-satisfied for a
wide range of observables and values of N (or x) in
DIS and other processes. This does not mean, however,
that we have no knowledge of, or use for, information
from higher orders. In particular, near x = 1 PDFs are
rather poorly known [8]. At the same time, the ratio of
C’s depends on N , and if α

�
lnN is large, it becomes

important to control higher-order dependence on lnN .
This is a task usually referred to as resummation, to
which we now turn.

3. Resummation

Let us continue our discussion of DIS, describing
what is known about the N -dependence of the coeffi-
cient functions C, as a step toward understanding the
role of higher orders. Specializing again for simplic-
ity to nonsinglet or valence, the resummed coefficient
function may be written as [9,10]

C̃res(N,Q, µ) = C̃NLO�
�
� (N,Q, µ) + CDIS� e

�
DIS(

 � � � � ), (8)

where “sub” implies a subtraction on C̃NLO to keep
C̃res exact at order α

�
, and where CDIS� corresponds to

the NLO N -independent (“hard virtual”) terms. The
exponent resums logarithms of N :

EDIS(N,Q, µ) = (9)
∫ � 2

� 2
� ¯

dµ′2

µ′2

[
A(α

�
(µ′2)) ln(N̄µ′2/Q2) +B(α

�
(µ′2))

]
,

with N̄ ≡ Ne � E , and with

A(α
�
) =

α
�

π
C �

[
1 +

α
�

2π

(
C �
(

67

18
− π2

6

)
− 10

9
T �

)]

B(α
�
) =

3

2
C �

α
�

2π
. (10)

Eq. (10) is accurate to leading (LL) and next-to-leading
logarithms (NLL) in N in the exponent: α � � ln � +1N
and α � � ln � N , respectively. The N dependence of the
ratio C̃res

2 (N,Q,Q)/C̃NLO
2 (N,Q,Q) is shown in Fig. 1,

with Q2 = 1, 5, 10, 100 GeV2. At N = 1 the ratio is
unity. It is less than unity for moderate N , but then
begins to rise, with a slope that increases strongly for
small Q. At low Q2 and large N , higher orders can
be quite important. What does this mean for PDFs?
We can certainly refit PDFs with resummed coefficient
functions, and we see that the high moments of such
PDFs are likely to be quite different from those from
NLO fits.

To get a sense of how such an NLL/NLO-MS scheme
might differ from a classic NLO-MS scheme, we resort
to a model set of resummed distributions, determined
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Figure 1. Ratio of Mellin-N moments of resummed
and NLO MS-scheme quark coefficient functions for
F2. The numbers denote the value of Q2 in GeV2. We
have chosen µ = Q.

as follows. We define valence PDFs in the resummed
scheme by demanding that their contributions to F2

match those of the corresponding NLO valence PDFs
at a fixed Q = Q0, which is ensured by

φ̃res(N,Q2
0) = φ̃NLO(N,Q2

0)
C̃NLO

2 (N,Q0, Q0)

C̃res
2 (N,Q0, Q0)

. (11)

Using the resummed parton densities from Eq. (11),
we can generate the ratios F res

2 (x,Q)/FNLO
2 (x,Q).

The result of this test, picking Q2
0 = 100 GeV2 is

shown in Fig. 2, for the valence F2(x,Q) of the proton,
with x = 0.55, 0.65, 0.75 and 0.85. The NLO distribu-
tions were those of [2], and the inversion of moments
was performed as in [11]. The effect of resummation is
moderate for mostQ. At small values ofQ, and large x,
the resummed structure function shows a rather sharp
upturn. One also finds a gentle decrease toward very
large Q [12]. We could interpret this difference as the
uncertainty in the purely NLO valence PDFs implied
by resummation.

From this simplified example, we can already see
that the use of resummed coefficient functions is not
likely to make drastic differences in global fits to PDFs
based on DIS data, at least so long as the region of
small Q2, of 10 GeV2 or below, is avoided at very large
x. At the same time, it is clear that a resummed fit
will make some difference at larger x, where PDFs are
not so well known. We stress that a full global fit will
be necessary for complete confidence.

Figure 2. Ratio of the valence parts of the resummed
and NLO proton structure function F2(x,Q2), as a
function of Q2 for various values of Bjorken-x. For
F res

2 , the ‘resummed’ parton densities have been de-
termined through Eq. (11).

4. Resummed hadronic scattering

Processes other than DIS play an important role in
global fits, and in any case are of paramount phe-
nomenological interest. Potential sources of large
corrections can be identified quite readily in Eq. (2).
At higher orders, factors such as α

�
ln2N , can be as

large as unity over the physically relevant range of z
in some processes. In this case, they, and their scale
dependence can be competitive with NLO contribu-
tions. Since they make up well-defined parts of the
correction at each higher order, however, it is possible
to resum them. To better determine PDFs in regions of
phase space where such corrections are important, we
may incorporate resummation in the hard-scattering
functions that determine PDFs.

The Drell-Yan cross section is the benchmark for the
resummation of logs of 1−z, or equivalently, logarithms
of the moment variable N [9],

σ̂DY
� ¯� (N,Q, µ) = σBorn(Q) CDY� e

�
DY(

 � � � � )

+O(1/N) . (12)
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The exponent is given in the MS scheme by

EDY(N,Q, µ) = 2

∫ � 2

� 2
� ¯ 2

dµ′2

µ′2
A(α

�
(µ′2)) ln N̄

+2

∫ � 2

� 2
�

¯ 2

dµ′2

µ′2
A(α

�
(µ′2)) ln

(
µ′

Q

)
, (13)

with A as in Eq. (10), and where we have exhibited
the dependence on the factorization scale, setting the
renormalization scale to Q. Just as in Eq. (10) for
DIS, Eq. (13) resums all leading and next-to-leading
logarithms of N .

It has been noted in several phenomenological appli-
cations that threshold resummation, and even fixed-
order expansions based upon it, significantly reduce
sensitivity to the factorization scale [13]. To see why,
we rewrite the moments of the Drell-Yan cross section
in resummed form as

σDY��� (N,Q)

=
∑

�

φ � � � (N,µ) σ̂DY
� ¯� (N,Q, µ) φ¯�

� � (N,µ)

=
∑

�

φ � � � (N,µ) e
�

DY(
 � � � � )

�
2σBorn(Q) CDY�

× φ¯�
� � (N,µ) e

�
DY(

 � � � � )
�
2 +O(1/N) . (14)

The exponentials compensate for the lnN part of
the evolution of the parton distributions, and the
µ-dependence of the resummed expression is sup-
pressed by a power of the moment variable,

µ
d

dµ

[
φ � � � (N,µ) e

�
DY(

 � � � � )
�
2
]

= O(1/N) .
(15)

This surprising relation holds because the function
A(α

�
) in Eq. (10) equals the residue of the 1/(1 − x)

term in the splitting function P � � . Thus, the remaining
N -dependence in a resummed cross section still begins
at order α2� , but the part associated with the 1/(1−x)
term in the splitting functions has been canceled to all
orders. Of course, the importance of the remaining
sensitivity to µ depends on the kinematics and the
process. In addition, although resummed cross sections
can be made independent of µ for all lnN , they are
still uncertain at next-to-next-to leading logarithm in
N , simply because we do not know the function A at
three loops. Notice that none of these results depends
on using PDFs from a resummed scheme, because MS
PDFs, whether resummed or NLO, evolve the same
way. The remaining, uncanceled dependence on the
scales leaves room for an educated use of scale-setting
arguments [14]. The connection between resummation
and the elimination of scale dependence has also been
emphasized in [15].

Scale dependence aside, can we in good conscience
combine resummed hard scattering functions in Eq.
(1) with PDFs from an NLO scheme? This wouldn’t
make much sense if resummation significantly changed
the coefficient functions with which the PDFs were
originally fit. As Fig. 2 shows, however, this is unlikely
to be the case for DIS at moderate x. Thus, it makes
sense to apply threshold resummation with NLO PDFs
to processes and regions of phase space where there
is reason to believe that logs are more important at
higher orders than for the input data to the NLO fits.

At the same time, a set of fits that includes thresh-
old resummation in their hard-scattering functions can
be made [10], and their comparison to strict NLO fits
would be quite interesting. Indeed, such a comparison
would be a new measure of the influence of higher
orders. A particularly interesting example might be
to compare resummed and NLO fits using high-p � jet
data [3].

5. Power-suppressed corrections

In addition to higher orders in α
�
(µ2), Eq. (1) has

corrections that fall off as powers of the hard-scattering
scale Q. In contrast to higher orders, these corrections
require a generalization of the form of the factorized
cross section. Often power corrections are parameter-
ized as h(x)/[(1 − x)Q2] in inclusive DIS, where they
begin at twist four. In DIS, this higher twist term
influences PDFs when included in joint fits with the
NLO and NNLO models, and vice-versa [16–18]. As
in the case with higher orders, such “power-improved”
fits should be treated as new schemes.

6. Conclusions

The success of NLO fits to DIS and the studies of
resummation above suggest that over most of the range
of x, theoretical uncertainties of the NLO model are
not severe. At the same time, to fit large x with more
confidence than is now possible may require including
the resummed coefficient functions.

Resummation is especially desirable for global fits
that employ a variety of processes, such as DIS and
high-p � jet production, which differ in available phase
space near partonic threshold. In a strictly NLO ap-
proach, uncalculated large corrections are automati-
cally incorporated in the PDFs themselves. As a result,
the NLO model cannot be expected to fit simultane-
ously the large-x regions of processes with differing logs
of 1−x in their hard-scattering functions, unless these
higher-order corrections are taken into account.

The results illustrated in the figures suggest that
these considerations may be important in DIS with
Q2 below a few GeV2 and at large x, where they may
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have substantial effects on estimates of higher twist in
DIS. In hadronic scattering, large-N (x → 1) resum-
mation, which automatically reduces scale dependence,
may play an even more important role than in DIS.
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1. Introduction

The last few years have seen both new and improved
measurements of deep inelastic and related hard scat-
tering processes and invigorated efforts to test the lim-
its of our knowledge of parton distributions (PDF)
and assess their uncertainty. Recent global analysis
fits to the wealth of structure functions and related
data provide PDFs of substantial sophistication com-
pared to the previous parameterizations [1][2]. The
new PDF sets account for correlated uncertainty in
strong coupling constant, variation from normalization
uncertainty of data sets, theoretical assumptions re-
garding higher twists effects, initial parameterization
form and starting Q

�
value, etc. Range of potential

variation in gluon density, strange and charm quark
densities or, recently, also in d quark distribution [3]
are also provided. Participants of this Workshop in
the PDF group primarily concentrated on finding new
ways of inclusion of systematic uncertainties associated
with experimental data into the framework of global
analyses. Development in likelihood calculation by
Giele, Keller, and Kosower, studies by CDF and D0
collaborators, and a parallel work of CTEQ collabora-
tion are presented in these proceedings.

New or improved results from several experiments
have contributed to better knowledge of PDFs, how-
ever, there are still areas where the interpretation of ex-
perimental data is not clear. Few of these contentious
issues will be discussed in this note.

2. Issues in the Interpretation of Experimental
Data

2.1. Gluon distribution at moderate to high x
In principle, many processes are sensitive to the

gluon distribution, but its measurement is difficult
beyond x > 0.2 where it becomes very small. Fer-
milab second generation– direct photon experiment
E706, although quite challenging experimentally, was
designed to constrain gluon distribution at high x.
For proton-nucleon interactions in LO, direct photons
are produced through Compton scattering off gluon
(gq → γq) 90% of the time in the E706 kinematic
range.

The first direct photon measurements, as well as
WA70 [4] were in agreement with the NLO theory

and were used in several generations of global analysis
fits. However, series of revisits of theoretical issues
in 1990-ties (see, e.g., discussion in [5]) pointed to a
large dependence of the NLO calculation on renor-
malization and factorization scales and necessity to
include yet-unknown photon fragmentation function
in the calculations. Since the available

√
(s) energy

is low (20-40 GeV) for the fixed target experiments
missing perturbation orders in the calculation are im-
portant. Moreover, as shown by the E706 analysis,
the transverse momentum of initial state partons (k � )
dramatically affects the differential cross sections mea-
sured versus transverse momentum of the outgoing
photon (p � ). E706 measured the so-called k � smearing
by observing kinematic imbalance in production of π

�

pairs, π
�
γ, and double-direct photons and found k �

values ≈ 1 GeV and increasing with
√

(s) [6]. Simi-
lar results are obtained in dijets and Drell-Yan data.
K � is believed to arise from both soft gluon emissions
and non-perturbative phenomena. NLO calculations
smeared with k � estimated from these measurements
are increased by a factor of 2 to 4 (see Figure 1) and
agree with the E706 direct photon and π0 data on
proton and Be targets, at

√
(s) of 31 and 38 GeV. A

strong indication of k � effects and the need for soft
gluon resummation comes also from the analysis of
double direct photon production. Both the NLO re-
summed theory and k � smeared NLO theory describe
the double direct photon kinematics and cross section
very well, in stark contrast to the “plain” NLO predic-
tion [7].

A comparison of current gluon distribution param-
eterizations indicates our lack of knowledge of gluon
in the moderate to high x range, (see Figure 2). The
hardest gluon is the CTEQ4HJ distribution. Here the
gluon distribution is forced to follow the high E � in-
clusive differential jet cross section measured at CDF.
Latest PDF sets by CTEQ match the WA70 direct
photon data at

√
(s)=23 GeV with no k � , and require

k � =1.1 (1.3) GeV/c for the E706 data at
√

(s)=31
(38) GeV. Due to the difficulty in reconciling this ap-
proach no direct photon data is used in the CTEQ5
global analysis. The MRST group chose a different
treatment: gluon distributions are reduced at high x
to accommodate some k � smearing for both WA70 and
E706 resulting in a moderately good description of the
data and three PDF sets spanning the extremes (shown
in Figure 2). The variety of predictions agree at low x,
but differ widely at high x. The uncertainty in the k �

modeling, its unknown shape versus p � , and potential
discrepancy between WA70 and E706 measurements
(see discussions in [6] and [8]) require theoretical work
to help resolve this outstanding controversy. Luckily,
the interest in direct photon physics and its importance
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Figure 1. Data and Theory agree after k � smearing for
π0 and γ production in pBe interactions at 800 GeV.
Data-Theory/Theory comparison for various values of
k � is shown in lower insert.

for gluon determination has caught on, and 98 and 99
have seen a flurry of publications, notably: “Soft-gluon
resummation and NNLO corrections for direct pho-
ton production” by N. Kidonakis, J. Owens (hep-
ph/9912388), “Results in next-to-leading-log prompt-
photon hadroproduction” by S. Catani, M. Mangano,
C. Oleari (hep-ph/9912206), “Unintegrated parton dis-
tributions and prompt photon hadroproduction” by
M. Kimber, A. Martin, M. Ryskin (DTP/99/100),
“Origin of k � smearing in direct photon production”
by H. Lai, H. Li (hep-ph/9802414), “Sudakov resum-
mation for prompt photon production in hadron col-
lisions” by S. Catani, M. Mangano, P. Nason (hep-
ph/9806484), etc. New resummation results are also
expected from a group of G. Sterman and W. Vogel-
sang.

In addition to direct photons, the Tevatron jet and
dijet measurements are also sensitive to the gluon dis-
tribution (in the moderate x region). These measure-
ments and comparisons to theory have their own set of
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NLO fit to DIS+DY+E706 proton beam data
√s=31.6 and 38.8 GeV data combined
〈kT〉 = 1.2 and 1.3 GeV/c, respectively

Q = 5.0 GeV/c

Figure 2. Recent PDF sets indicate substantial dis-
agreement about the shape and size of gluon distri-
bution at moderate to high x. CTEQ5 results closely
follow CTEQ4M curve shown here.

concerns, e.g. jet definition, which is never exactly the
same in the data and in the NLO calculation or higher
order correlations in the underlying event (see discus-
sion in, e.g., [9]). The jet cross sections, strongly dom-
inated by qq̄ scattering, are also sensitive to changes
in high x valence distributions. An unresolved issue in
the jet cross section analysis is also a lack of full scaling
between 630 and 1800 GeV data, predicted by QCD,
and a discrepancy between the D0 and CDF measure-
ments of this scaling ratio at lowest x � = E � /

√
(s).

2.2. Valence distributions at high x
Apart from modifications to gluon and charm quark

distributions, the valence d quark has received the
biggest boost in high x region compared to previous
PDF sets. The change is on the order of 30% at x=0.6
and Q2 = 20GeV2 and comes from inclusion of a new
observable in the global analysis fits, namely W-lepton
asymmetry measured at CDF. Precise measurement of
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W-lepton asymmetry serves as an independent check
on the u and d quark distributions obtained from fits to
deep inelastic data. The observable is directly corre-
lated with the slope of the d/u ratio in the x range
of 0.1-0.3. The consequence of this new constraint
is that the predicted F

�
2 /F

�

2 ratio is increased and
the description of the NMC measurement of F

�
2 /F

�

2

is improved relative to earlier PDF sets. There re-
main, however, two areas of uncertainty regarding va-
lence distributions at high x: the value of d/u ratio
at x=1 and a question regarding a need for nuclear
corrections to F

�
2 /F

�

2 NMC measurement. Deuterium
is a loosely bound nucleus, of low A, and traditionally
no corrections for nuclear effects have been applied.
However, an analysis of SLAC F2 data on different
targets under the assumption that nuclear effects scale
with the nuclear binding for all nuclei predicts nuclear
correction for deuterium of 4±1% at x=0.7 [10]. There
is also a lack of clarity regarding d/u value at 1. A
non-perturbative QCD-motivated models of the 1970’s
argue that the d/u ratio should approach 0.2 at highest
x, whereas any standard form of the parameterization
used in global fits drive this ratio to zero. The CTEQ
collaboration has performed studies of change in d/u
ratio, depending on assumptions regarding nuclear ef-
fects in deuterium and the value of d/u ratio at x=1 [3].
CTEQ5UD PDF set includes nuclear corrections for
deuterium in F

�
2 /F

�

2 ; its change relative to CTEQ5 is
a plausible range for d distribution uncertainty in light
of this unresolved question, see Figure 3.

2.3. Resolved discrepancies between PDF fits
and the data

During the duration of this Workshop (March - Nov
1999), two of the outstanding discrepancies between
PDF fits or two sets of the experimental data have
been resolved.

One of these was the near 20% discrepancy at small
x (0.007-0.1) between structure function F2 measured
in muon (NMC) and neutrino (CCFR) deep inelas-
tic scattering [11]. For the purpose of comparison of
these structure functions, NMC F

� �
2 was “corrected”

for nuclear shadowing, measured in muon scattering, to
correspond to F

� � �
2 , and rescaled by the 5/18 charge

rule to convert from muon to neutrino F2. On the other
hand, CCFR result was obtained in the framework of
massless charm quark to avoid kinematic differences
between muon and neutrino scattering off the strange
quark (νs→ µc versus µs→ µs) resulting from mass of
the charm. Any one of the above procedures could have
had an unquantified systematic uncertainty resulting
in the observed disagreement.

New analysis from CCFR, presented at this Work-
shop [12], indicates that the SF measured in CCFR is

Figure 3. The d/u ratio for CTEQ5 and CTEQ5UD
PDF sets, illustrating difference from nuclear correc-
tion for NMC F2 on deuterium. The dotted and dashed
lines correspond to two different assumptions regarding
value of d/u at x=1.

in agreement with the F2 of NMC, within experimental
uncertainties. The analysis used a new measurement
of the difference between neutrino and antineutrino
structure functions xF3, rather than the ∆xF3=4(s-c)
parameterization used earlier. Comparison between
calculations [13] indicated that there were large theo-
retical uncertainties in the charm production modeling
for both ∆xF3 and the “slow rescaling” correction that
converts from massive to massless charm quark frame-
work. Therefore, in the new analysis “slow rescaling”
correction was not applied and ∆xF3 and F2 were
extracted from two parameter fits to the data. The
new measurement agrees well with the Mixed Flavor
Scheme (MFS) for heavy quark production as imple-
mented by MRST group. To compare with charged
lepton scattering data each of the experimental results
were divided by the theoretical predictions for F2, us-
ing either light or heavy quark schemes implemented
by MRST. The ratios of Data/Theory for F

�
2 (CCFR),
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F
�
2 (NMC), and F

�
2 (SLAC) are shown in Figure 4.

Systematic errors, except for the overall normalization
uncertainties, are included. The MFS MRST predic-
tions have higher twist and target mass correction ap-
plied. Apart from resolving the NMC-CCFR discrep-
ancy, the new measurement had also implication of rul-
ing out one of the Variable Flavor Scheme calculations
available on the market [14].

Figure 4. The ratio of the massive F
�
2 measured at

CCFR to the prediction of MFS MRST prediction with
target mass and higher twist corrections applied. Also
shown are the ratios of F2µ (NMC) and F

�
2 (SLAC) to

the MFS MRST predictions.

Another example is that of Drell-Yan production
(pd → µ+µ−) as measured by Fermilab experiment
E772, shown in Figure 5. The MRST fits are compared
to the differential cross section in x � = x1 − x2 and
in
√
τ =

√
M2/s, where x1 and x2 are the target and

projectile fractional momenta, and M - dimuon pair
mass. The discrepancy, visible at high x � and low

√
τ

was hard to reconcile, since in this kinematic region
the dominant contribution to the cross section comes

from u(x1) × [ū(x2) + d̄(x2)] evaluated at x1 ≈ x �
and x2 ≈ 0.03, well constrained by the deep inelastic
scattering data. Since then, the E772 experiment has
reexamined their acceptance corrections and released
an erratum to their earlier measurement [15]. The new
values differ from the old ones only for large x � and
small values of mass M , and the new cross section is
decreased in this region by a factor up to two.

10
-9

10
-7

10
-5

10
-3

10
-1

10

10 3

10 5

10 7

10 9

0.08 0.09 0.1 0.2 0.3 0.4

E772 (p d →µ+µ- X)   pLAB = 800 GeV

M
3 d2 σ/

dx
Fd

M
 (

nb
/G

eV
2 /n

uc
le

on
)

√τ

Figure 5. Drell-Yan production from E772 compared
to the MRST prediction. The theory curves include K
factor of 0.96 and the cross sections for different values
of x � are offset by a factor of 10. Corrected E772 data
reduce the discrepancy at high x � and low τ .

3. Outlook for New Structure Function Mea-
surements

Measurements of neutral and charged current cross
sections in positron - proton collisions at large Q2 from
the 1994-97 data have just been published by HERA
experiments [16,17]. The data sample corresponds to
an integrated luminosity of 35 pb−1. The Q2 evo-
lution of the parton densities of the proton is tested
over 150-30000 GeV2, Bjorken x between 0.0032-0.65,
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and yields no significant deviation from the prediction
of perturbative QCD. These data samples are not yet
sensitive enough to pin down the d quark distribution
at high x, however, an expected 1000 pb−1 in positron
and electron running in years 2001-2005, achievable
after HERA luminosity upgrade, will have a lot to say
about 20% -like effects at high x in the ratio of valence
distributions†.

HERA’s 1995-1999 data sets, not yet included in
the global analysis fits, were plotted against standard
PDFs and showed a good agreement over the new
kinematic range that these data span (extension to
lower yet x and higher Q2 compared to 1994 data) [2].
HERA’s very large statistics and improved precision
will allow further reduction of normalization uncer-
tainty of PDF fits. This is important for QCD pre-
diction like W and Z total cross sections at Tevatron -
current 3% normalization uncertainty in PDFs directly
translates to 3% uncertainty for these cross sections.
Improvements in the measurements may need to go in
hand with progress in the perturbative calculations; it
is likely that NNLO analysis of deep inelastic scatter-
ing data will change the level and/or x dependence of
PDFs at the percentish-type level.

One can expect continued progress in heavy quark
treatment and in the theoretical understanding of soft
gluon and non-perturbative effects in the direct photon
production. In that case, the E706 data are sufficiently
precise to severely constrain the gluon distribution.

One of the few currently active structure function
– related experiments is also NuTeV (Fermilab E815).
Better understanding of charm quark issues (see dis-
cussion in preceding section) and much improved cal-
ibration of NuTeV detector relative to CCFR’s (with
a similar statistical power of the data set) is expected
to yield a more precise measurement of structure func-
tions and differential cross section for ν and ν̄ inter-
action in Fe. Sign-selected beam and several advance-
ments in the NLO theory of heavy quark production
will allow NuTeV to improve systematic uncertainty in
the new measurement of the strange seas s and s̄.

Last but not least, Run II physics promises to be a
good source of new constraints on parton distributions.
W-lepton asymmetry will be measured with much im-
proved precision and in an expanded rapidity range.
New observables are proposed for further exploring
collider constrains on PDFs, e.g., W and Z rapidity
distributions [18]. And hopefully, many of the issues in
jet measurements will be addressed and understood –
they are high on J.Womersley Christmas wish-list! [19]

†Charge current ep→ νX component, of the same order as the
neutral current scattering at very high Q2, directly probes u
(e−p) and d (e+p) distributions at high x.
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Abstract

We present a status report of a variety of projects
related to heavy quark production and parton distri-
butions for the Tevatron Run II.

1. Introduction

The production of heavy quarks, both hadroproduc-
tion and leptoproduction, has become an important
theoretical and phenomenological issue. While the
hadroproduction mode is of direct interest to this work-
shop,[1] we shall find that the simpler leptoproduction
process can provide important insights into the fun-
damental production mechanisms.[2–5] Therefore, in
preparation for the Tevatron Run II, we must consider
information from a variety of sources including charm
and bottom production at fixed-target and collider lep-
ton and hadron facilities.

For example, the charm contribution to the total
structure function F2 at HERA, is sizeable, up to
∼ 25% in the small x region.[4] Therefore a proper
description of charm-quark production is required for a
global analysis of structure function data, and hence a
precise extraction of the parton densities in the proton.
These elements are important for addressing a variety
of issues at the Tevatron.

In addition to the studies investigated at the Run II
workshop series, we want to call attention to the

In particular, in the Run II B-Physics workshop, the stud-
ies of Working Group 4: Production, Fragmentation, Spec-
troscopy, organized by Eric Braaten, Keith Ellis, Eric Lae-

extensive work done in the Standard Model Physics
(and more) at the LHC Workshop organized by
Guido Altarelli, Daniel Denegri, Daniel Froidevaux,
Michelangelo Mangano, Tatsuya Nakada which was
held at CERN during the same period.∗ In particular,
the investigations of the LHC b-production group (con-
venors: Paolo Nason, Giovanni Ridolfi, Olivier Schnei-
der, Giuseppe Tartarelli, Vikas Pratibha) and the QCD
group (convenors: Stefano Catani, Davison Soper, W.
James Stirling, Stefan Tapprogge, Michael Dittmar)
are directly relevant to the material discussed here.
Furthermore, our report limits its scope to the issues
discussed within the Run II workshop; for a recent
comprehensive review, see Ref. [6].

2. Schemes for Heavy Quark Production

Heavy quark production also provides an important
theoretical challenge as the presence of the heavy quark
mass, M , introduces a new scale into the problem.
The heavy quark mass scale, M , in addition to the
characteristic energy scale of the process (which we
will label here generically as E), will require a different
organization of the perturbation series depending on
the relative magnitudes of M and E. We find there
are essentially two cases to consider.†

1. For the case of E ∼M , heavy-quark production
is calculated in the so-called fixed flavor number
(FFN) scheme from hard processes initiated by
light quarks (u, d, s) and gluons, where all effects
of the charm quark are contained in the pertur-
bative coefficient functions. The FFN scheme
incorporates the correct threshold behavior, but
for large scales, E �M , the coefficient functions
in the FFN scheme at higher orders in α

�
contain

potentially large logarithms ln
�
(E2/M2), which

may need to be resummed.[7–10]

2. For the case of E � M , it is necessary to in-
clude the heavy quark as an active parton in
the proton. This serves to resum the potentially
large logarithms ln

�
(E2/M2) discussed above.

The simplest approach incorporating this idea

nen, William Trischuk, Rick Van Kooten, and Scott Menary,
addressed many issues of direct interest to this subgroup.
The report is in progress, and the web page is located at:
http://www-theory.fnal.gov/people/ligeti/Brun2/
∗The main web page is located at:
http://home.cern.ch/∼mlm/lhc99/lhcworkshop.html
†We emphasize that the choice of a prescription for dealing with
quark masses in the hard scattering coefficients for deeply in-
elastic scattering is a separate issue from the choice of definition
of the parton distribution functions. For all of the prescriptions
discussed here, one uses the standard MS definition of parton
distributions.
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is the so-called zero mass variable flavor num-
ber (ZM-VFN) scheme, where heavy quarks are
treated as infinitely massive below some scale
E ∼M and massless above this threshold. This
prescription has been used in global fits for many
years, but it has an error ofO(M 2/E2) and is not
suited for quantitative analyses unless E �M .

While the extreme limits E � M and E ∼ M
are straightforward, much of the experimental data
lie in the intermediate region As such, the correct
PQCD formulation of heavy quark production, capable
of spanning the full energy range, must incorporate
the physics of both the FFN scheme and the ZM-VFN
scheme. Considerable effort has been made to devise a
prescription for heavy-flavor production that interpo-
lates between the FFN scheme close to threshold and
the ZM-VFN scheme at large E.

The generalized VFN scheme includes the heavy
quark as an active parton flavor and involves matching
between the FFN scheme with three active flavors and
a four-flavor prescription with non-zero heavy-quark
mass. It employs the fact that the mass singulari-
ties associated with the heavy-quark mass can be re-
summed into the parton distributions without taking
the limit M → 0 in the short-distance coefficient func-
tions, as done in the ZM-VFN scheme. This is precisely
the underlying idea of the Aivazis–Collins–Olness–
Tung (ACOT) ACOT scheme[11] which is based on
the renormalization method of Collins–Wilczek–Zee
(CWZ).[12] The order-by-order procedure to imple-
ment this approach has now been systematically es-
tablished to all orders in PQCD by Collins.[13]

Recently, additional implementations of VFN
schemes have been defined in the literature. While
these schemes all agree in principle on the result
summed to all orders of perturbation theory, the way
of ordering the perturbative expansion is not unique
and the results differ at finite order in perturbation
theory. The Thorne–Roberts (TR) [14] prescription
has been used in the MRST recent global analyses
of parton distributions.[15] The BMSN and CNS pre-
scriptions have made use of the O(α2� ) calculations by
Smith, van Neerven, and collaborators[8,9] to carry
these ideas to higher order. The boundary conditions
on the PDF’s at the flavor threshold become more com-
plicated at this order; in particular, the PDF’s are no
longer continuous across the N to N+1 flavor threshold.
Buza et al.,[8] have computed the matching conditions,
and this has been implemented in an evolution pro-
gram by CSN.[9] More recently, a Simplified-ACOT
(SACOT) scheme inspired by the prescription advo-
cated by Collins [13] was introduced;[16] we describe
this new scheme in Sec. 4.

3. From Low To High Energy Scale

F
2
c

 Q2
10 100 1000 10000

0.1

0.2

0.3

0.4

0.5

0.6

 FFN

 VFN

Figure 1. F
�

2 for x = 0.01 as a function of Q2 in GeV
for two choices of µ as obtained within the O(α1� ) FFN
and (ACOT) VFN schemes. For details, see Ref. [17].

To compare the features of the FFN scheme with
the ACOT VFN scheme‡ concretely, we will take the
example of heavy quark production in DIS; the features
we extract from this example are directly applicable
to the hadroproduction case relevant for the Tevatron
Run II. One measure we have of estimating the un-
certainty of a calculated quantity is to examine the
variation of the renormalization and factorization scale
dependence. While this method can only provide a
lower bound on the uncertainty, it is a useful tool.

In Fig. 1, we display the component of F
�

2 for the
s + W → c sub-process at x = 0.01 plotted vs. Q2.
We gauge the scale uncertainty by varying µ from
1/2µ0to 2.0µ0 with µ0 =

√
Q2 +m2

� . In this figure,
both schemes are applied to O(α1� ). We observe that
the FFN scheme is narrower at low Q, and increases
slightly at larger Q. This behavior is reasonable given
that we expect this scheme to work best in the thresh-
old region, but to decrease in accuracy as the unre-
summed logs of ln

�
(Q2/m2

� ) increase.
Conversely, the ACOT VFN scheme has quite the

opposite behavior. At low Q, this calculation displays
mild scale uncertainty, but at large Q this uncertainty
is significantly reduced. This is an indication that the
resummation of the ln

�
(Q2/m2

� ) terms via the heavy
quark PDF serves to decrease the scale uncertainty at a
given order of perturbation theory. While these general
results were to be expected, what is surprising is the
magnitude of the scale variation. Even in the threshold

‡In this section we shall use the ACOT VFN scheme for this
illustration. The conclusions extracted in comparison to the
FFN scheme are largely independent of which VFN scheme are
used.

201



region where Q ∼ m � we find that the VFN scheme is
comparable or better than the FFN scheme.

At present, the FFN scheme has been calculated to
one further order in perturbation theory, O(α2� ). While
the higher order terms do serve to reduce the scale
uncertainty, it is only at the lowest values of Q that the
O(α2� ) FFN band is smaller than the O(α1� ) VFN band.
Recently, O(α2� ) calculations in the VFN scheme have
been performed;[9] it would be interesting to extend
such comparisons to these new calculations.

Let us also take this opportunity to clarify a mis-
conception that has occasionally appeared in the lit-
erature. The VFN scheme is not required to reduce
to the FFN scheme at Q = m � . While it is true
that the VFN scheme does have the FFN scheme as a
limit, this matching depends on the definitions of the
PDF’s, and the choice of the µ scale.§ In this particular
example, even at Q = m � , the resummed logs in the
heavy quark PDF can yield a non-zero contribution
which help to stabilize the scale dependence of the
VFN scheme result.¶

The upshot is that even in the threshold region, the
resummation of the logarithms via the heavy quark
PDF’s can help the stability of the theory.

4. Simplified ACOT (SACOT) prescription

We investigate a modification of the ACOT scheme
inspired by the prescription advocated by Collins.[13]
This prescription has the advantage of being easy to
state, and allowing relatively simple calculations. Such
simplicity could be crucial for going beyond one loop
order in calculations.‖

Simplified ACOT (SACOT) prescription.
Set M � to zero in the calculation of the
hard scattering partonic functions σ̂ for in-
coming heavy quarks.

For example, this scheme tremendously simplifies
the calculation of the neutral current structure func-
tion F

�
� ���

�2 even at O(α1� ). In other prescriptions, the
tree process γ + c → c + g and the one loop process
γ+c→ cmust be computed with non-zero charm mass,
and this results in a complicated expression.[20] In the
SACOT scheme, the charm mass can be set to zero so
that the final result for these sub-processes reduces to
the very simple massless result.

§The general renormalization scheme is laid out in the CWZ
paper[12]. The matching of the PDF’s at O(α1

s) was computed
in Ref. [18] and Ref. [19]. The O(α2

s) boundary conditions were
computed in Ref. [8].
¶Cf., Ref. [17] for a detailed discussion.
‖See Ref. [16] for a detailed definition, discussion, and
comparisons.
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Figure 2. F
�

2 as a function of Q2 in GeV computed
to O(α1� ) in the ZM-VFN, FFN, ACOT, and SACOT
schemes using CTEQ4M PDF’s. Fig. a) x = 0.1 , and
Fig. b) x = 0.001. Figures taken from Ref. [16].

While the SACOT scheme allows us to simplify the
calculation, the obvious question is: does this simpli-
fied version contain the full dynamics of the process.
To answer this quantitatively, we compare prediction
for F

�
� ���

�2 obtained with 1) the SACOT scheme at
order α1� with 2) the predictions obtained with the
original ACOT scheme, 3) the ZM-VFN procedure in
which the charm quark can appear as a parton but
has zero mass, and 4) the FFN procedure in which the
charm quark has its proper mass but does not appear
as a parton. For simplicity, we take µ = Q.

In Fig. 2 we show F
�

2 (x,Q) as a function of Q for x =
0.1 and x = 0.001 using the CTEQ4M parton distribu-
tions.[21,22] We observe that the ACOT and SACOT
schemes are effectively identical throughout the kine-
matic range. There is a slight difference observed in
the threshold region, but this is small in comparison
to the renormalization/factorization µ-variation (not
shown). Hence the difference between the ACOT and
SACOT results is of no physical consequence. The
fact that the ACOT and SACOT match extremely well
throughout the full kinematic range provides explicit
numerical verification that the SACOT scheme fully
contains the physics.

Although we have used the example of heavy quark
leptoproduction, let us comment briefly on the im-
plications of this scheme for the more complex case
of hadroproduction.[1,23–25] At present, we have cal-
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culations for the all the O(α2� ) hadroproduction sub-
processes such as gg → QQ̄ and gQ → gQ. At O(α3� )
we have the result for the gg → gQQ̄ sub-processes,
but not the general result for gQ→ ggQ with non-zero
heavy quark mass. With the SACOT scheme, we can
set the heavy quark mass to zero in the gQ → ggQ
sub-process and thus make use of the simple result
already in the literature.∗∗ This is just one example
of how the SACOT has the practical advantage of al-
lowing us to extend our calculations to higher orders
in the perturbation theory. We now turn to the case
of heavy quark production for hadron colliders.

5. Heavy Quark Hadroproduction

Figure 3. Differential cross section for b-production
vs. p � comparing the Fixed-Order (FO) and the
Fixed-Order Next-to-Leading-Log (FONLL) result in
the MS scheme. The bands are obtained by vary-
ing independently the renormalization and factoriza-
tion scales. The cross section is scaled by m5� with

m � =
√
m2� + p2� , and

√
s = 1800 GeV , m

�
= 5 GeV ,

y = 0, with CTEQ3M PDF’s. Figure taken from Cac-
ciari, Greco, and Nason, Ref. [27].

There has been notable progress in the area of
hadroproduction of heavy quarks. The original NLO
calculations of the gg → bb̄ subprocess were performed
by Nason, Dawson, and Ellis [23], and by Beenakker,
Kuijf, van Neerven, Meng, Schuler, and Smith[24].
Recently, Cacciari and Greco[26] have used a NLO
fragmentation formalism to resum the heavy quark
contributions in the limit of large p � ; the result is

∗∗For a related idea, see the fragmentation function formalism
of Cacciari and Greco[26] in the following section.

a decreased renormalization/factorization scale vari-
ation in the large p � region. The ACOT scheme
was applied to the hadroproduction case by Olness,
Scalise, and Tung.[25] More recently, the NLO frag-
mentation formalism of Cacciari and Greco has been
merged with the massive FFN calculation of Nason,
Dawson, and Ellis by Cacciari, Greco, and Nason,[27];
the result is a calculation which matches the FFN cal-
culation at low p � , and takes advantage of the NLO
fragmentation formalism in the high p � region, thus
yielding good behavior throughout the full p � range.
This is displayed in Fig. 3 where we see that this
Fixed-Order Next-to-Leading-Log (FONLL) calcula-
tion displays reduced scale variation in the large p �

region, and matches on the the massive NLO calcu-
lation in the small p � region. Further details can be
found in the report of the LHC Workshop b-production
group.††

6. W + Heavy Quark Production

PDF Set Mass (GeV) LO WQQ̄ NLO

CTEQ1M m � =1.7 96 20 161
MRSD0’ m � =1.7 81 20 138
CTEQ3M m � =1.7 83 20 141
CTEQ3M m

�
=5.0 0.17 9.09 9.33

Table 3
The W + charm-tagged one-jet inclusive cross section
in pb for LO,W+QQ̄, and NLO (including the W+QQ̄
contribution) using different sets of parton distribution
functions. Table is taken from Ref. [28].

The precise measurement of W plus heavy quark
(W+Q) events provides an important information on
a variety of issues. Measurement of W+Q allows us
to test NLO QCD theory at high scales and investi-
gate questions about resummation and heavy quark
PDF’s. For example, if sufficient statistics are avail-
able, W+charm final states can be used to extract
information about the strange quark distribution. In
an analogous manner, the W+bottom final states are
sensitive to the charm PDF; furthermore, W+bottom
can fake Higgs events, and are also an important back-
ground for sbottom (b̃) searches.

The cross sections for W plus tagged heavy quark jet
were computed in Ref. [28], and are shown in Table 3.

††The LHC Workshop b-production group is organized by
Paolo Nason, Giovanni Ridolfi, Olivier Schneider, Giuseppe
Tartarelli, Vikas Pratibha, and the report is currently in prepa-
ration. The webpage for the b-production group is located at
http://home.cern.ch/n/nason/www/lhc99/

203



Figure 4. Differential dσ/dp � � for γ plus tagged heavy
quark production as compared with Pythia and the
NLO QCD results. Figure taken from Ref. [29]. NLO
QCD calculations from Ref. [30].

Note that this process has a large K-factor, and hence
comparison between data and theory will provide dis-
cerning test of the NLO QCD theory. While the small
cross sections of these channels hindered analysis in
Run I, the increased luminosity in Run II can make
this a discriminating tool. For example, Run I pro-
vided minimal statistics on W+Q, but there was data
in the analogous neutral current channel γ+Q. The
NLO QCD cross sections for γ plus heavy quark were
computed in Ref. [30]. Fig. 4 displays preliminary
Tevatron data from Run I and the comparison with
both the PYTHIA Monte Carlo and the NLO QCD
calculations; again, note the large K-factor. If similar
results are attainable in the charged current channel
at Run II, this would be revealing.

Extensive analysis the W+Q production channels
were performed in Working Group I: “QCD tools for
heavy flavors and new physics searches,” and we can
make use of these results to estimate the precision to
which the strange quark distribution can be extracted.
We display Fig. 5 (taken from the WGI report[31])
which shows the distribution in x of the s-quarks which
contribute to the W+c process.‡‡ This figure indicates
that there will good statistics in an x-range comparable
to that investigated by neutrino DIS experiments;[2,3]

‡‡For a detailed analysis of this work including selection crite-
ria, see the report of Working Group I: “QCD Tools For Heavy
Flavors And New Physics Searches,” as well as Ref. [31].

Figure 5. Distribution of Events/0.01 vs. x of the
s-quarks which contribute to the s + W → c process.
Figure taken from Ref. [31].

hence, comparison with this data should provide an
important test of the strange quark sea and the under-
lying mechanisms for computing such processes.

7. The Strange Quark Distribution

A primary uncertainty for W+charm production
discussed above comes from the strange sea PDF, s(x),
which has been the subject of controversy for sometime
now. One possibility is that new analysis of present
data will resolve this situation prior to Run II, and
provide precise distributions as an input the the Teva-
tron data analysis. The converse would be that this
situation remains unresolved, in which case new data
from Run II may help to finally solve this puzzle.

The strange distribution is directly measured by
dimuon production in neutrino-nucleon scattering.†

The basic sub-process is νN → µ−cX with a subse-
quent charm decay c→ µ+X ′.

The strange distribution can also be extracted indi-
rectly using a combination of charged (W±) and neu-
tral (γ) current data; however, the systematic uncer-
tainties involved in this procedure make an accurate
determination difficult.[32] The basic idea is to use the
relation

F
 �
2

F
���

2

=
5

18

{
1− 3

5

(s+ s̄)− (c+ c̄) + ...

q + q̄

}

(1)
†Presently, there are a number of LO analyses, and one NLO
analysis.[2,3]
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Figure 6. Variation of x s(x, µ) for three choices of µ,
and also with a “SR” (slow-rescaling) type correction:
x→ x(1 +m2

� /Q2).

to extract the strange distribution. This method is
complicated by a number of issues including the xF3

component which can play a crucial role in the small-x
region—precisely the region where there has been a
long-standing discrepancy.

The structure functions are defined in terms of the
neutrino-nucleon cross section via:

d2σ
� � ¯�

dx dy
=

� 2
F

� �

π

[
F2(1− y) + xF1y

2 ± xF3y(1− y

2
)
]

It is instructive to recall the simple leading-order cor-
respondence between the F ’s and the PDF’s:‡

F
( � � ¯� )



2 = x
{
u+ ū+ d+ d̄+ 2s+ 2c

}

xF
( � � ¯� )



3 = x
{
u− ū+ d− d̄± 2s∓ 2c

}
(2)

Therefore, the combination ∆xF3:

∆xF3 = xF
� 
3 − xF ¯�


3 = 4x{s− c} (3)

can be used to probe the strange sea distribution,
and to understand heavy quark (charm) production.
This information, together with the exclusive dimuon

‡To exhibit the basic structure, the above is taken the limit
of 4 quarks, a symmetric sea, and a vanishing Cabibbo an-
gle. Of course, the actual analysis takes into account the full
structure.[32]

0.1

0.2

0.3

0.4

1 10 10
2

0.1

0.2

0.3

0.4

1 10 10
2

∆ xF3 / 2
(CCFR preliminary)

x = 0.015

x = 0.045
f=3 (GRV98)

µ2=Q2+m2

f=3 (CTEQ4-HQ)

f=4 (CTEQ4-HQ)

µ2=Q2

x = 0.08 f=4 (CTEQ4-HQ)

µ2=(pmax
T)2

Q2 / GeV2

0.1

0.2

1 10 10
2

Figure 7. ∆xF3/2 vs. Q2 for three choices of x. Cal-
culations provided by S. Kretzer.

events, may provide a more precise determination of
the strange quark sea.

To gauge the dependence of ∆xF3 upon various fac-
tors, we first consider xs(x, µ) in Fig. 6, and then the
full NLO ∆xF3 in Fig. 7; this allows us to see the
connection between ∆xF3 and xs(x, µ) beyond leading
order. In Fig. 6 we have plotted the quantity xs(x, µ)
vs. Q2 for two choices of x in a range relevant to the
the dimuon measurements. We use three choices of the
µ2 scale: {Q2, Q2 + m2

� , P 2�
max
}. The choices Q2 and

Q2 + m2
� differ only at lower values of Q2; the choice

P 2�
max

is comparable to Q2 and Q2 + m2
� at x = 0.08

but lies above for x = 0.015. The fourth curve labeled
Q2 + “SR” uses µ2 = Q2 with a “slow-rescaling” type
of correction which (crudely) includes mass effects by
shifting x to x(1 + m2

� /Q2); note, the result of this
correction is significant at large x and low Q2.

In Fig. 7 we have plotted the quantity ∆xF3/2 for
an isoscalar target computed to order α1� . We display
three calculations for three different x-bins relevant to
strange sea measurement. 1) A 3-flavor calculation us-
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ing the GRV98[33] distributions,§ and µ =
√
Q2 +m2.

2) A 3-flavor calculation using the CTEQ4HQ distri-
butions, and µ = Q. 3) A 4-flavor calculation using
the CTEQ4HQ distributions, and µ = Q.

The two CTEQ curves show the effect of the charm
distribution, and the GRV curve shows the effect of
using a different PDF set. Recall that the GRV calcu-
lation corresponds to a FFN scheme.

The pair of curves using the CTEQ4HQ distribu-
tions nicely illustrates how the charm distribution
c(x, µ2) evolves as ln(Q2/m2

� ) for increasing Q2; note,
c(x, µ2) enters with a negative sign so that the 4-flavor
result is below the 3-flavor curve. The choice µ = Q
ensures the 3- and 4-flavor calculation coincide at
µ = Q = m � ; while this choice is useful for in-
structive purposes, a more practical choice might be
µ ∼

√
Q2 +m2, cf., Sec. 2, and Ref. [17].

For comparison, we also display preliminary data
from the CCFR analysis.[32] While there is much free-
dom in the theoretical calculation, the difference be-
tween these calculations and the data at low Q values
warrants further investigation.

8. Conclusions and Outlook

A detailed understanding of heavy quark production
and heavy quark PDF’s at the Tevatron Run II will re-
quire analysis of fixed-target and HERA data as well as
Run I results. Comprehensive analysis of the combined
data set can provide incisive tests of the theoretical
methods in an unexplored regime, and enable precise
predictions that will facilitate new particle searches
in a variety of channels. This document serves as a
progress report, and work on these topics will continue
in preparation for the Tevatron Run II.

This work is supported by the U.S. Department
of Energy, the National Science Foundation, and the
Lightner-Sams Foundation.
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PARTON DENSITIES FOR HEAVY
QUARKS

J. Smith†

C.N. Yang Institute for Theoretical Physics, SUNY
at Stony Brook, Stony Brook, NY 11794-3840

Abstract

We compare parton densities for heavy quarks.

Reactions with incoming heavy (c,b) quarks are of-
ten calculated with heavy quark densities just like
those with incoming light mass (u,d,s) quarks are
calculated with light quark densities. The heavy
quark densities are derived within the framework of
the so-called zero-mass variable flavor number scheme
(ZM-VFNS). In this scheme these quarks are described
by massless densities which are zero below a specific
mass scale µ. The latter depends on m � or m

�
. Let us

call this scale the matching point. Below it there are
n � massless quarks described by n � massless densities.
Above it there are n � +1 massless quarks described by
n � +1 massless densities. The latter densities are used
to calculate processes with a hard scale M � m � ,m

�
.

For example in the production of single top quarks via
the weak process q � + b → q� + t, where q � , q � are
light mass quarks in the proton/antiproton, one can
argue that M = m � should be chosen as the large scale
and m

�
can be neglected. Hence the incoming bottom

quark can be described by a massless bottom quark
density.

The generation of these densities starts from the so-
lution of the evolution equations for n � massless quarks
below the matching point. At and above this point
one solves the evolution equations for n � + 1 massless
quarks. However in contrast to the parameterization
of the x-dependences of the light quarks and gluon
at the initial starting scale, the x dependence of the
heavy quark density at the matching point is fixed.
In perturbative QCD it is defined by convolutions of
the densities for the n � quarks and the gluon with
specific operator matrix elements (OME’s), which are
now know up to O(α2� ) [1]. These matching conditions
determine both the ZM-VFNS density and the other
light-mass quark and gluon densities at the matching
points. Then the evolution equations determine the
new densities at larger scales. The momentum sum
rule is satisfied for the n � + 1 quark densities together
with the corresponding gluon density.

†Work supported in part by the NSF grant PHY-9722101
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Figure 1. The charm quark density xcNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c

2
)2.

Figure 2. Same as Fig. 1 for the NLO results from
MRST98 set 1.

Parton density sets contain densities for charm and
bottom quarks, which generally directly follow this ap-
proach or some modification of it. The latest CTEQ
densities [2] use O(α

�
) matching conditions. The x

dependencies of the heavy c and b-quark densities are
zero at the matching points. The MRST densities [3]
have more complicated matching conditions designed
so that the derivatives of the deep inelastic structure
functions F2 and F � with regard to Q2 are continuous
at the matching points. Recently we have provided
another set of ZM-VFNS densities [4], which are based

Figure 3. Same as Fig. 1 for the NLO results from
CTEQ5HQ.

on extending the GRV98 three-flavor densities in [5] to
four and five-flavor sets. GRV give the formulae for
their LO and NLO three flavor densities at very small
scales. They never produced a c-quark density but
advocated that charm quarks should only exist in the
final state of production reactions, which should be cal-
culated from NLO QCD with massive quarks as in [6].
We have evolved their LO and NLO densities across
the matching point µ = m � with O(α2� ) matching
conditions to provide LO and NLO four-flavor densi-
ties containing massless c-quark densities. Then these
LO and NLO densities were evolved between µ = m �

and µ = m
�

with four-flavor LO and NLO splitting
functions. At this new matching point the LO and
NLO four-flavor densities were then convoluted with
the O(α2� ) OME’s to form five-flavor sets containing
massless b-quarks. These LO and NLO densities were
then evolved to higher scales with five-flavor LO and
NLO splitting functions. Note that the O(α2� ) match-
ing conditions should really be used with NNLO split-
ting functions to produce NNLO density sets. However
the latter splitting functions are not yet available, so
we make the approximation of replacing the NNLO
splitting functions with NLO ones.

In this short report we would like to compare the
charm and bottom quark densities in the CS, MRS and
CTEQ sets. We concentrate on the five-flavor densi-
ties, which are more important for Tevatron physics.
In the CS set they start at µ2 = m2� = 20.25 GeV2.
At this scale the charm densities in the CS, MRST98
(set 1) and CTEQ5HQ sets are shown in Figs. 1 – 3
respectively. Since the CS charm density starts off neg-

208



Figure 4. The bottom quark density xbNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c

2
)2.

ative for small x at µ2 = m2
� = 1.96 GeV2 it evolves

less than the corresponding CTEQ5HQ density. At
larger µ2 all the CS curves in Fig. 1 are below those
for CTEQ5HQ in Fig. 3 although the differences are
small. In general the CS c-quark densities are more
equal to those in the MRST (set 1) in Fig. 2.

Figure 5. Same as Fig. 4 for the NLO results from
MRST98 set 1.

At the matching point µ2 = 20.25 GeV2 the b-quark
density also starts off negative at small x as can be seen
in Fig.4, which is a consequence of the explicit form of

the OME’s in [1]. At O(α2� ) the OME’s have nonlog-
arithmic terms which do not vanish at the matching
point and yield a finite function in x, which is the
boundary value for the evolution of the b-quark den-
sity. This negative start slows down the evolution of
the b-quark density at small x as the scale µ2 increases.
Hence the CS densities at small x in Fig. 4 are smaller
than the MRST98 (set 1) densities in Fig. 5 and the
CTEQ5HQ densities in Fig. 6 at the same values of µ2.
The differences between the sets are still small, of the
order of five percent at small x and large µ2. Hence
it should not really matter which set is used to cal-
culate cross sections for processes involving incoming
b-quarks at the Tevatron.

Figure 6. Same as Fig. 4 for the NLO results from
CTEQ5HQ.

We suspect that the differences between these results
for the heavy c and b-quark densities are primarily
due to the different gluon densities in the three sets
rather to than the effects of the different boundary
conditions. This could be checked theoretically if both
LO and NLO three-flavor sets were provided by MRST
and CTEQ at small scales. Then we could rerun our
programs to generate sets with O(α2� ) boundary condi-
tions. However these inputs are not available. We note
that CS uses the GRV98 LO and NLO gluon densities,
which are rather steep in x and generally larger than
the latter sets at the same values of µ2. Since the
discontinuous boundary conditions suppress the charm
and bottom densities at small x, they enhance the
gluon densities in this same region (in order that the
momentum sum rules are satisfied). Hence the GRV98
three flavour gluon densities and the CS four and five
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flavor gluon densities are generally significantly larger
than those in MRST98 (set 1) and CTEQ5HQ. Unfor-
tunately experimental data are not yet precise enough
to decide which set is the best one. We end by noting
that all these densities are given in the MS scheme.
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Abstract

The hadroproduction of lepton pairs with mass Q
and finite transverse momentum Q � is described in
perturbative QCD by the same partonic subprocesses
as prompt photon production. We demonstrate that,
like prompt photon production, lepton pair production
is dominated by quark-gluon scattering in the region
Q � > Q/2. This feature leads to sensitivity to the
gluon density in kinematical regimes accessible in col-
lider and fixed target experiments, and it provides a
new independent method for constraining the gluon
density.

1. Introduction

The production of lepton pairs in hadron collisions
h1h2 → γ∗X ; γ∗ → ll̄ proceeds through an intermedi-
ate virtual photon via qq̄ → γ∗, and the subsequent
leptonic decay of the virtual photon. Traditionally,
interest in this Drell-Yan process has concentrated on
lepton pairs with large mass Q which justifies the ap-
plication of perturbative QCD and allows for the ex-
traction of the antiquark density in hadrons [1].

Prompt photon production h1h2 → γX can be cal-
culated in perturbative QCD if the transverse mo-
mentum Q � of the photon is sufficiently large. Be-
cause the quark-gluon Compton subprocess is domi-
nant, gq → γX , this reaction provides essential in-
formation on the gluon density in the proton at large
x [2]. Unfortunately, the analysis suffers from frag-
mentation, isolation, and intrinsic transverse momen-
tum uncertainties. Alternatively, the gluon density can
be constrained from the production of jets with large
transverse momentum at hadron colliders [3], but the
information from different experiments and colliders is
ambiguous.

‡Supported by the U.S. Department of Energy, Division of High
Energy Physics, under Contract W-31-109-ENG-38.
§Supported by Bundesministerium für Bildung und Forschung
under Contract 05 HT9GUA 3, by Deutsche Forschungsgemein-
schaft under Contract KL 1266/1-1, and by the European Com-
mission under Contract ERBFMRXCT980194.
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In this paper we demonstrate that, like prompt pho-
ton production, lepton pair production is dominated by
quark-gluon scattering in the region Q � > Q/2. This
realization means that new independent constraints on
the gluon density may be derived from Drell-Yan data
in kinematical regimes that are accessible in collider
and fixed target experiments but without the theo-
retical and experimental uncertainties present in the
prompt photon case.

In Sec. 2, we review the relationship between vir-
tual and real photon production in hadron collisions in
next-to-leading order QCD. In Sec. 3 we present our
numerical results, and Sec. 4 is a summary.

2. Next-to-leading order qcd formalism

In leading order (LO) QCD, two partonic subpro-
cesses contribute to the production of virtual and real
photons with non-zero transverse momentum: qq̄ →
γ(∗)g and qg → γ(∗)q. The cross section for lepton pair
production is related to the cross section for virtual
photon production through the leptonic branching ra-
tio of the virtual photon α/(3πQ2). The virtual photon
cross section reduces to the real photon cross section
in the limit Q2 → 0.

The next-to-leading order (NLO) QCD corrections
arise from virtual one-loop diagrams interfering with
the LO diagrams and from real emission diagrams.
At this order 2 → 3 partonic processes with incident
gluon pairs (gg), quark pairs (qq), and non-factorizable
quark-antiquark (qq̄2) processes contribute also. Sin-
gular contributions are regulated in n=4-2ε dimensions
and removed through MS renormalization, factoriza-
tion, or cancellation between virtual and real contri-
butions. An important difference between virtual and
real photon production arises when a quark emits a
collinear photon. Whereas the collinear emission of a
real photon leads to a 1/ε singularity that has to be
factored into a fragmentation function, the collinear
emission of a virtual photon yields a finite logarithmic
contribution since it is regulated naturally by the pho-
ton virtuality Q. In the limit Q2 → 0 the NLO virtual
photon cross section reduces to the real photon cross
section if this logarithm is replaced by a 1/ε pole. A
more detailed discussion can be found in [4].

The situation is completely analogous to hard photo-
production where the photon participates in the scat-
tering in the initial state instead of the final state. For
real photons, one encounters an initial-state singularity
that is factored into a photon structure function. For
virtual photons, this singularity is replaced by a loga-
rithmic dependence on the photon virtuality Q [5].

A remark is in order concerning the interval in Q � in
which our analysis is appropriate. In general, in two-

scale situations, a series of logarithmic contributions
will arise with terms of the type α

� � ln
�
(Q/Q � ). Thus,

if either Q � >> Q or Q � << Q, resummations of
this series must be considered. For practical reasons,
such as event rate, we do not venture into the domain
Q � >> Q, and our fixed-order calculation should be
adequate. On the other hand, the cross section is large
in the region Q � << Q. In previous papers [4], we
compared our cross sections with available fixed-target
and collider data on massive lepton-pair production,
and we

were able to establish that fixed-order perturba-
tive calculations, without resummation, should be re-
liable for Q � > Q/2. At smaller values of Q � ,
non-perturbative and matching complications intro-
duce some level of phenomenological ambiguity. For
the goal we have in mind, viz., contraints on the gluon
density, it would appear best to restrict attention to
the region Q � ≥ Q/2, but below Q � >> Q.

3. Predicted cross sections

In this section we present numerical results for the
production of lepton pairs in pp̄ collisions at the Teva-
tron with center-of mass energy

√
S = 1.8 and 2.0

TeV. We analyze the invariant cross section Ed3σ/dp3

averaged over the rapidity interval -1.0 < y < 1.0.
We integrate the cross section over various intervals
of pair-mass Q and plot it as a function of the trans-
verse momentum Q � . Our predictions are based on
a NLO QCD calculation [6] and are evaluated in the
MS renormalization scheme. The renormalization and
factorization scales are set to µ = µ � =

√
Q2 +Q2� .

If not stated otherwise, we use the CTEQ4M parton
distributions [7] and the corresponding value of Λ in
the two-loop expression of α

�
with four flavors (five if

µ > m
�
). The Drell-Yan factor α/(3πQ2) for the decay

of the virtual photon into a lepton pair is included in
all numerical results.

In Fig. 1 we display the NLO QCD cross section for
lepton pair production at the Tevatron at

√
S = 1.8

TeV as a function of Q � for four regions of Q. The
regions of Q have been chosen to avoid resonances,
i.e. between 2 GeV and the J/ψ resonance, between
the J/ψ and the Υ resonances, above the Υ’s, and a
high mass region. The cross section falls both with
the mass of the lepton pair Q and, more steeply, with
its transverse momentum Q � . No data are available
yet from the CDF and D0 experiments. However,
prompt photon production data exist to Q � ' 100
GeV, where the cross section is about 10−3 pb/GeV2.
It should be possible to analyze Run I data for lepton
pair production to at least Q � ' 30 GeV where one
can probe the parton densities in the proton up to
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Figure 1. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pp̄ → γ∗X at

√
S = 1.8 TeV in

non-resonance regions of Q. The cross section falls
with the mass of the lepton pair Q and, more steeply,
with its transverse momentum Q � .

x � = 2Q � /
√
S ' 0.03. The UA1 collaboration mea-

sured the transverse momentum distribution of lepton
pairs at

√
S = 630 GeV up to x � = 0.13 [8], and their

data agree well with our theoretical results [4].
The fractional contributions from the qg and qq̄ sub-

processes through NLO are shown in Fig. 2. It is evi-
dent that the qg subprocess is the most important sub-
process as long as Q � > Q/2. The dominance of the
qg subprocess diminishes somewhat with Q, dropping
from over 80 % for the lowest values of Q to about 70 %
at its maximum for Q ' 30 GeV. In addition, for very
largeQ � , the significant luminosity associated with the
valence dominated q̄ density in pp̄ reactions begins to
raise the fraction of the cross section attributed to the
qq̄ subprocesses. Subprocesses other than those initi-
ated by the qq̄ and qg initial channels are of negligible
import.

We update the Tevatron center-of-mass energy to
Run II conditions (

√
S = 2.0 TeV) and use the latest

global fit by the CTEQ collaboration (5M). Figure 3

pp
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 → γ*X at √S = 1.8 TeV
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Figure 2. Contributions from the partonic sub-
processes qg and qq̄ to the invariant cross section
Ed3σ/dp3 as a function of Q � for pp̄ → γ∗X at

√
S

= 1.8 TeV. The qg channel dominates in the region
Q � > Q/2.

demonstrates that the larger center-of-mass energy in-
creases the invariant cross section for the production of
lepton pairs with mass 5 GeV < Q < 6 GeV by 5 % at
low Q � ' 1 GeV and 20 % at high Q � ' 100 GeV. In
addition, the expected luminosity for Run II of 2 fb−1

should make the cross section accessible to Q � ' 100
GeV or x � ' 0.1. This extension would constrain the
gluon density in the same regions as prompt photon
production in Run I.

Next we present a study of the sensitivity of collider
and fixed target experiments to the gluon density in
the proton. The full uncertainty in the gluon density
is not known. Here we estimate this uncertainty from
the variation of different recent parametrizations. We
choose the latest global fit by the CTEQ collaboration
(5M) as our point of reference [3] and compare results
to those based on their preceding analysis (4M[7]) and
on a fit with a higher gluon density (5HJ) intended
to describe the CDF and D0 jet data at large trans-
verse momentum. We also compare to results based on
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Figure 3. Invariant cross section Ed3σ/dp3 as a
function of Q � for pp̄ → γ∗X and two different
center-of-mass energies of the Tevatron (Run 1:

√
S =

1.8 TeV, Run 2:
√
S = 2.0 TeV). The cross section for

Run 2 is 5 to 20 % larger, depending on Q � .

global fits by MRST [2], who provide three different
sets with a central, higher, and lower gluon density,
and to GRV98 [9]∗.

In Fig. 4 we plot the cross section for lepton pairs
with mass between the J/ψ and Υ resonances at Run II
of the Tevatron in the region between Q � = 10 and 30
GeV (x � = 0.01 . . .0.03). For the CTEQ parametriza-
tions we find that the cross section increases from 4M
to 5M by 2.5 % (Q � = 30 GeV) to 5 % (Q � = 10
GeV) and from 5M to 5HJ by 1 % in the whole
Q � -range. The largest differences from CTEQ5M are
obtained with GRV98 at low Q � (minus 10 %) and
with MRST(g↑) at large Q � (minus 7%).

The theoretical uncertainty in the cross section can
be estimated by varying the renormalization and fac-

∗In this set a purely perturbative generation of heavy flavors
(charm and bottom) is assumed. Since we are working in a
massless approach, we resort to the GRV92 parametrization for
the charm contribution [10] and assume the bottom contribution
to be negligible.

pp
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 → γ*X at √S = 2.0 TeV
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Figure 4. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pp̄ → γ∗X at

√
S = 2.0 TeV in the

region between the J/ψ and Υ resonances. The largest
differences from CTEQ5M are obtained with GRV98 at
low Q � (minus 10 %) and with MRST(g↑) at large Q �

(minus 7 %).

torization scale µ = µ � around the central value√
Q2 +Q2� . Figure 5 shows this variation for pp̄ →

γ∗X at
√
S = 2.0 TeV in the region between the

J/ψ and Υ resonances. In the interval 0.5 <
µ/
√
Q2 +Q2� < 2 the dependence of the cross section

on the scale µ = µ � drops from±15% (LO) to the small
value ±2.5% (NLO). The K-factor ratio (NLO/LO) is
approximately 2, as one might expect naively.

A similar analysis for Fermilab’s fixed target experi-
ment E772 [11] is shown in Fig. 6. In this experiment, a
deuterium target is bombarded with a proton beam of
momentum plab = 800 GeV, i.e.

√
S = 38.8 GeV. The

cross section is averaged over the scaled longitudinal
momentum interval 0.1 < x � < 0.3. In fixed target
experiments one probes substantially larger regions of
x � than in collider experiments. Therefore one expects
greater sensitivity to the gluon distribution in the pro-
ton. We find that use of CTEQ5HJ increases the cross
section by 7 % (26 %) w.r.t. CTEQ5M at Q � = 3
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Figure 5. Invariant cross section Ed3σ/dp3 as a func-
tion of the renormalization and factorization scale µ =
µ � for pp̄ → γ∗X at

√
S = 2.0 TeV in the region be-

tween the J/ψ and Υ resonances andQ � = 5.5 GeV. In
the interval 0.5 < µ/

√
Q2 +Q2� < 2 the dependence of

the cross section on the scale µ = µ � drops from ±15%
(LO) to ±2.5% (NLO). The K-Factor (NLO/LO) is
approximately 2.

GeV (Q � = 6 GeV) and by 134 % at Q � = 10 GeV.
With MRST(g↓) the cross section drops relative to the
CTEQ5M-based values by 17 %, 40 %, and 59 % for
these three choices of Q � .

Figure 7 shows the variation of the fixed target cross
section on the renormalization and factorization scale
µ = µ � . In the interval 0.5 < µ/

√
Q2 +Q2� < 2

the dependence decreases from ±49% (LO) to ±37%
(NLO). An optimal scale choice might be µ = µ � =√
Q2 +Q2� /4, where the points of Minimal Sensitiv-

ity (maximum of NLO) and of Fastest Apparent Con-
vergence (LO=NLO) nearly coincide. At µ = µ � =√
Q2 +Q2� , the K-factor ratio is 2.6. The NLO

cross section turns negative at the lowest scale shown
µ = µ � =

√
Q2 +Q2� /8 ' 1 GeV, a value too low to

guarantee perturbative stability.

4. Summary

The production of Drell-Yan pairs with low mass
and large transverse momentum is dominated by gluon
initiated subprocesses. In contrast to prompt photon
production, uncertainties from fragmentation, isola-

pN → γ*X at plab = 800 GeV
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Figure 6. Invariant cross section Ed3σ/dp3 as a func-
tion of Q � for pN → γ∗X at plab = 800 GeV. The
cross section is highly sensitive to the gluon distribu-
tion in the proton in regions of x � where it is poorly
constrained in current analyses.

tion, and intrinsic transverse momentum are absent.
The hadroproduction of low mass lepton pairs is there-
fore an advantageous source of information on the
parametrization and size of the gluon density. The
increase in luminosity of Run II increases the accessible
region of x � from 0.03 to 0.1. The theoretical uncer-
tainty has been estimated from the scale dependence
of the cross sections and found to be very small for
collider experiments.
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CONCLUSION: MANIFESTO

Our goal in this conclusion is not to summarize each
of the individual contributions, but to introduce simple
guidelines, a “Manifesto”, for Run II analysis †:

• Each analysis should provide a way to calculate
the Likelihood for their data, the probability of
the data given a theory prediction.

• The likelihood information should be stored per-
manently and made available.

The current practice is generally to take experimen-
tal data, correct for acceptance and smearing and com-
pare the result to the theoretical predictions. In many
cases, the acceptance and smearing corrections depend
on the theoretical prediction and thus the practice may
lead to uncontrolled uncertainties. Data are generally
presented as tables of central values with one-sigma
standard deviation. That information is clearly not
enough to reconstruct the Likelihood when the uncer-
tainties are not Gaussian distributed. Hence the first
guideline of our Manifesto to provide a way to calcu-
late the likelihood, the probability of the data given
a theory. The likelihood contains all the information
about the experiment and is the basis for any analysis.
It should consist of a code and necessary input tables
of “data”. The code can be as simple as a χ2 calcula-
tion when all the appropriate conditions are met, but
will be significantly more involved in the general case,
see [2]. The likelihood function should be stored in a
format which remains valid for several decades. This
means ASCII format for data and simplicity in the
code. This is important if we want the experimental
data to remain useful even as theoretical calculations
evolve. If the experimental results are not tied to the-
ory as it stands in the year 2001, they we will be able
to continue to use them, even as the theory evolves
from NLO to NNLO to resummed calculation.

The likelihood functions should be stored in a central
repository and treated in the same fashion as papers‡.
This is important because Collaboration evolve over
time and eventually disappear.

Note that the burden is of course not just on the
experimental side. Theoreticians need to provide pre-
dictions with understood theoretical uncertainties over
a defined kinematic range. Numerical calculations
should be made more efficient. Codes are usually writ-
ten with the anticipation that they will be run a few
times with a few different PDFs. One can anticipate
that if the goal to extract uncertainties for the PDFs

†clearly this manifesto could be applied to any experiment
‡Auxiliary files in the FNAL preprints database may be one
location or Web pages
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from data is to be reached that these codes will have
to be run many orders of magnitude more. Event gen-
erators are preferable as they allow a better match to
experimental cuts and the possibility of comparison of
smeared theory to raw data. A central repository for
the theoretical code would also be very helpful.

In this series of workshops several groups reported
significant progress towards extracting PDFs from
data with uncertainties [2,3]. Note also that other
groups, not connected to this workshop [4], have re-
ported results on PDF uncertainties since this work-
shop started. We are therefore optimistic that realistic
PDF uncertainties will be available from several groups
by the start of Run II at the Tevatron.

Progress has also been made on the study of the
best way to present data [5] for Run II. Clearly, the
use of the Run II Tevatron data to their full potential
will require planning and care through a collaborative
effort between phenomenologists and experimentalists.
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